Namespaces | Variables
train.py File Reference

Go to the source code of this file.

Namespaces

 train
 

Variables

string train.__version__ = '1.0'
 
string train.__author__ = 'Saul Alonso-Monsalve'
 
string train.__email__ = "saul.alonso.monsalve@cern.ch"
 
 train.sess = tf.Session()
 
 train.init = tf.global_variables_initializer()
 
 train.stream
 
 train.stdout
 
 train.level
 
 train.config = configparser.ConfigParser()
 
 train.SEED = int(config['random']['seed'])
 
 train.SHUFFLE = ast.literal_eval(config['random']['shuffle'])
 
 train.IMAGES_PATH = config['images']['path']
 
 train.VIEWS = int(config['images']['views'])
 
 train.PLANES = int(config['images']['planes'])
 
 train.CELLS = int(config['images']['cells'])
 
 train.STANDARDIZE = ast.literal_eval(config['images']['standardize'])
 
 train.DATASET_PATH = config['dataset']['path']
 
 train.PARTITION_PREFIX = config['dataset']['partition_prefix']
 
 train.LABELS_PREFIX = config['dataset']['labels_prefix']
 
 train.LOG_PATH = config['log']['path']
 
 train.LOG_PREFIX = config['log']['prefix']
 
 train.ARCHITECTURE = config['model']['architecture']
 
 train.CHECKPOINT_PATH = config['model']['checkpoint_path']
 
 train.CHECKPOINT_PREFIX = config['model']['checkpoint_prefix']
 
 train.CHECKPOINT_SAVE_MANY = ast.literal_eval(config['model']['checkpoint_save_many'])
 
 train.CHECKPOINT_SAVE_BEST_ONLY = ast.literal_eval(config['model']['checkpoint_save_best_only'])
 
 train.CHECKPOINT_PERIOD = int(config['model']['checkpoint_period'])
 
 train.PARALLELIZE = ast.literal_eval(config['model']['parallelize'])
 
 train.GPUS = int(config['model']['gpus'])
 
 train.PRINT_SUMMARY = ast.literal_eval(config['model']['print_summary'])
 
 train.BRANCHES = ast.literal_eval(config['model']['branches'])
 
 train.OUTPUTS = int(config['model']['outputs'])
 
 train.RESUME = ast.literal_eval(config['train']['resume'])
 
 train.LEARNING_RATE = float(config['train']['lr'])
 
 train.MOMENTUM = float(config['train']['momentum'])
 
 train.DECAY = float(config['train']['decay'])
 
 train.TRAIN_BATCH_SIZE = int(config['train']['batch_size'])
 
 train.EPOCHS = int(config['train']['epochs'])
 
 train.EARLY_STOPPING_PATIENCE = int(config['train']['early_stopping_patience'])
 
 train.WEIGHTED_LOSS_FUNCTION = ast.literal_eval(config['train']['weighted_loss_function'])
 
 train.CLASS_WEIGHTS_PREFIX = config['train']['class_weights_prefix']
 
 train.MAX_QUEUE_SIZE = int(config['train']['max_queue_size'])
 
 train.VALIDATION_FRACTION = float(config['validation']['fraction'])
 
 train.VALIDATION_BATCH_SIZE = int(config['validation']['batch_size'])
 
dictionary train.TRAIN_PARAMS
 
dictionary train.VALIDATION_PARAMS
 
dictionary train.partition = {'train' : [], 'validation' : [], 'test' : []}
 
dictionary train.labels = {}
 
 train.class_weights = pickle.load(class_weights_file)
 
 train.training_generator = DataGenerator(**TRAIN_PARAMS).generate(labels, partition['train'], True)
 
 train.validation_generator = DataGenerator(**VALIDATION_PARAMS).generate(labels, partition['validation'], True)
 
 train.opt = optimizers.SGD(lr=LEARNING_RATE, momentum=MOMENTUM, decay=DECAY, nesterov=True)
 
list train.files = [f for f in os.listdir(CHECKPOINT_PATH) if os.path.isfile(os.path.join(CHECKPOINT_PATH, f))]
 
 train.reverse
 
 train.r = re.compile(CHECKPOINT_PREFIX[1:] + '-.*-.*.h5')
 
string train.filename = CHECKPOINT_PATH+'/'
 
 train.sequential_model
 
list train.input_shape = [PLANES, CELLS, 1]
 
 train.aux_model = networks.create_model(network=ARCHITECTURE, input_shape=input_shape)
 
int train.weight_decay = 1
 
list train.x = [None]*OUTPUTS
 
 train.use_bias
 
 train.False
 
 train.kernel_regularizer
 
 train.activation
 
 train.name
 
 train.model = multi_gpu_model(sequential_model, gpus=GPUS, cpu_relocation=True)
 
 train.num_outputs = len(sequential_model.output_names)
 
dictionary train.model_loss = {'categories':my_losses.masked_loss_categorical}
 
 train.loss
 
 train.optimizer
 
 train.metrics
 
string train.filepath = CHECKPOINT_PATH+CHECKPOINT_PREFIX+'.h5'
 
string train.monitor_acc = 'val_acc'
 
string train.monitor_loss = 'val_loss'
 
 train.checkpoint = my_callbacks.ModelCheckpointDetached(filepath, monitor=monitor_acc, verbose=1, save_best_only=CHECKPOINT_SAVE_BEST_ONLY, save_weights_only=False, mode='max', period=CHECKPOINT_PERIOD)
 
 train.lr_reducer = ReduceLROnPlateau(monitor=monitor_acc, mode='max', factor=0.1, cooldown=0, patience=10, min_lr=0.5e-6, verbose=1)
 
 train.early_stopping = EarlyStopping(monitor=monitor_acc, patience=EARLY_STOPPING_PATIENCE, mode='auto')
 
 train.csv_logger = CSVLogger(LOG_PATH + LOG_PREFIX + '.log', append=RESUME)
 
 train.my_callback = my_callbacks.MyCallback()
 
list train.callbacks_list = [lr_reducer, checkpoint, early_stopping, csv_logger, my_callback]
 
int train.initial_epoch = int(re.search(r'\d+', logfile.read().split('\n')[-2]).group())+1
 
 train.validation_data = validation_generator
 
 train.validation_steps = len(partition['validation'])//VALIDATION_BATCH_SIZE
 
 train.generator
 
 train.steps_per_epoch
 
 train.epochs
 
 train.class_weight
 
 train.callbacks
 
 train.max_queue_size
 
 train.verbose
 
 train.use_multiprocessing
 
 train.workers