|
string | generate_datataset.__version__ = '1.0' |
|
string | generate_datataset.__author__ = 'Saul Alonso-Monsalve' |
|
string | generate_datataset.__email__ = "saul.alonso.monsalve@cern.ch" |
|
| generate_datataset.stream |
|
| generate_datataset.stdout |
|
| generate_datataset.level |
|
| generate_datataset.config = configparser.ConfigParser() |
|
| generate_datataset.SEED = int(config['random']['seed']) |
|
| generate_datataset.IMAGES_PATH = config['images']['path'] |
|
| generate_datataset.VIEWS = int(config['images']['views']) |
|
| generate_datataset.PLANES = int(config['images']['planes']) |
|
| generate_datataset.CELLS = int(config['images']['cells']) |
|
| generate_datataset.DATASET_PATH = config['dataset']['path'] |
|
| generate_datataset.PARTITION_PREFIX = config['dataset']['partition_prefix'] |
|
| generate_datataset.LABELS_PREFIX = config['dataset']['labels_prefix'] |
|
| generate_datataset.UNIFORM = ast.literal_eval(config['dataset']['uniform']) |
|
| generate_datataset.OUTPUTS = int(config['model']['outputs']) |
|
| generate_datataset.TRAIN_FRACTION = float(config['train']['fraction']) |
|
| generate_datataset.WEIGHTED_LOSS_FUNCTION = ast.literal_eval(config['train']['weighted_loss_function']) |
|
| generate_datataset.CLASS_WEIGHTS_PREFIX = config['train']['class_weights_prefix'] |
|
| generate_datataset.VALIDATION_FRACTION = float(config['validation']['fraction']) |
|
| generate_datataset.TEST_FRACTION = float(config['test']['fraction']) |
|
int | generate_datataset.count_flavour = [0]*4 |
|
int | generate_datataset.count_category = [0]*14 |
|
dictionary | generate_datataset.partition = {'train' : [], 'validation' : [], 'test' : []} |
|
dictionary | generate_datataset.labels = {} |
|
list | generate_datataset.y_train = [] |
|
list | generate_datataset.y1_class_weights = [] |
|
list | generate_datataset.y2_class_weights = [] |
|
list | generate_datataset.only_train = ['nutau2', 'nutau3'] |
|
int | generate_datataset.count_neutrinos = 0 |
|
int | generate_datataset.count_antineutrinos = 0 |
|
int | generate_datataset.count_empty_views = 0 |
|
int | generate_datataset.count_empty_events = 0 |
|
int | generate_datataset.count_less_10nonzero_views = 0 |
|
int | generate_datataset.count_less_10nonzero_events = 0 |
|
| generate_datataset.count_train |
|
| generate_datataset.count_val |
|
| generate_datataset.count_test |
|
| generate_datataset.files = list(glob.iglob(images_path + "/images/*")) |
|
| generate_datataset.ID = imagefile.split("/")[-1][:-3] |
|
string | generate_datataset.infofile = images_path+'/info/' |
|
| generate_datataset.info = open(infofile, 'r').readlines() |
|
| generate_datataset.fInt = int(info[0].strip()) |
|
int | generate_datataset.flavour = fInt//4 |
|
int | generate_datataset.interaction = fInt%4 |
|
| generate_datataset.fNuEnergy = float(info[1].strip()) |
|
| generate_datataset.fLepEnergy = float(info[2].strip()) |
|
| generate_datataset.fRecoNueEnergy = float(info[3].strip()) |
|
| generate_datataset.fRecoNumuEnergy = float(info[4].strip()) |
|
| generate_datataset.fEventWeight = float(info[5].strip()) |
|
| generate_datataset.fNuPDG = normalize2(int(info[6].strip())) |
|
| generate_datataset.fNProton = normalize(int(info[7].strip())) |
|
| generate_datataset.fNPion = normalize(int(info[8].strip())) |
|
| generate_datataset.fNPizero = normalize(int(info[9].strip())) |
|
| generate_datataset.fNNeutron = normalize(int(info[10].strip())) |
|
| generate_datataset.random_value = np.random.uniform(0,1) |
|
| generate_datataset.pixels = np.fromstring(zlib.decompress(image_file.read()), dtype=np.uint8, sep='').reshape(VIEWS, PLANES, CELLS) |
|
list | generate_datataset.views = [None]*VIEWS |
|
list | generate_datataset.empty_view = [0,0,0] |
|
list | generate_datataset.non_empty_view = [0,0,0] |
|
int | generate_datataset.count_empty = 0 |
|
int | generate_datataset.count_less_10nonzero = 0 |
|
| generate_datataset.maxi = np.max(views[i]) |
|
| generate_datataset.mini = np.min(views[i]) |
|
| generate_datataset.nonzero = np.count_nonzero(views[i]) |
|
| generate_datataset.total = np.sum(views[i]) |
|
| generate_datataset.avg = np.mean(views[i]) |
|