Go to the source code of this file.
|  | 
|  | run_cnn_1class.parser = argparse.ArgumentParser(description='Run CNN over a full 2D projection.') | 
|  | 
|  | run_cnn_1class.help | 
|  | 
|  | run_cnn_1class.default | 
|  | 
|  | run_cnn_1class.args = parser.parse_args() | 
|  | 
|  | run_cnn_1class.PATCH_SIZE_W = int(args.rows) | 
|  | 
|  | run_cnn_1class.PATCH_SIZE_D = int(args.cols) | 
|  | 
| bool | run_cnn_1class.crop_event = False | 
|  | 
|  | run_cnn_1class.rootModule = args.module | 
|  | 
|  | run_cnn_1class.rootFile = TFile(args.input) | 
|  | 
| list | run_cnn_1class.keys = [rootModule+'/'+k.GetName()[:-4] for k in rootFile.Get(rootModule).GetListOfKeys() if '_raw' in k.GetName()] | 
|  | 
|  | run_cnn_1class.evname = keys[int(args.event)] | 
|  | 
|  | run_cnn_1class.raw | 
|  | 
|  | run_cnn_1class.deposit | 
|  | 
|  | run_cnn_1class.pdg | 
|  | 
|  | run_cnn_1class.tracks | 
|  | 
|  | run_cnn_1class.showers | 
|  | 
|  | run_cnn_1class.full2d = int(args.full) | 
|  | 
|  | run_cnn_1class.total_patches | 
|  | 
|  | run_cnn_1class.inputs = np.zeros((total_patches, PATCH_SIZE_W, PATCH_SIZE_D), dtype=np.float32) | 
|  | 
| int | run_cnn_1class.cnt_ind = 0 | 
|  | 
|  | run_cnn_1class.model_name = args.net | 
|  | 
|  | run_cnn_1class.m = load_model(model_name) | 
|  | 
|  | run_cnn_1class.loss | 
|  | 
|  | run_cnn_1class.optimizer | 
|  | 
|  | run_cnn_1class.pred = m.predict(inputs.reshape(inputs.shape[0], 1, PATCH_SIZE_W, PATCH_SIZE_D)) | 
|  | 
|  | run_cnn_1class.outputs = np.zeros((raw.shape[0], raw.shape[1]), dtype=np.float32) | 
|  | 
|  | run_cnn_1class.fig | 
|  | 
|  | run_cnn_1class.ax | 
|  | 
|  | run_cnn_1class.figsize | 
|  | 
|  | run_cnn_1class.cs = ax[0,0].pcolor(np.transpose(pdg & 0xFF), cmap='gist_ncar') | 
|  |