|  | 
|  | train_cnn_continue.parser = argparse.ArgumentParser(description='Run CNN training on patches with a few different hyperparameter sets.') | 
|  | 
|  | train_cnn_continue.help | 
|  | 
|  | train_cnn_continue.default | 
|  | 
|  | train_cnn_continue.args = parser.parse_args() | 
|  | 
|  | train_cnn_continue.config = read_config(args.config) | 
|  | configuration #############################  More... 
 | 
|  | 
|  | train_cnn_continue.cfg_name = args.model | 
|  | 
|  | train_cnn_continue.out_name = args.output | 
|  | 
|  | train_cnn_continue.CNN_INPUT_DIR = config['training_on_patches']['input_dir'] | 
|  | 
|  | train_cnn_continue.PATCH_SIZE_W | 
|  | 
|  | train_cnn_continue.PATCH_SIZE_D | 
|  | 
|  | train_cnn_continue.img_rows | 
|  | 
|  | train_cnn_continue.img_cols | 
|  | 
|  | train_cnn_continue.batch_size = config['training_on_patches']['batch_size'] | 
|  | 
|  | train_cnn_continue.nb_epoch = config['training_on_patches']['nb_epoch'] | 
|  | 
|  | train_cnn_continue.nb_classes = config['training_on_patches']['nb_classes'] | 
|  | 
|  | train_cnn_continue.model = load_model(cfg_name) | 
|  | CNN commpilation ###########################.  More... 
 | 
|  | 
|  | train_cnn_continue.sgd = SGD(lr=0.005, decay=1e-5, momentum=0.9, nesterov=True) | 
|  | 
|  | train_cnn_continue.optimizer | 
|  | 
|  | train_cnn_continue.loss | 
|  | 
|  | train_cnn_continue.loss_weights | 
|  | 
|  | train_cnn_continue.n_training = count_events(CNN_INPUT_DIR, 'training') | 
|  | read data sets ############################  More... 
 | 
|  | 
|  | train_cnn_continue.X_train = np.zeros((n_training, PATCH_SIZE_W, PATCH_SIZE_D, 1), dtype=np.float32) | 
|  | 
|  | train_cnn_continue.EmTrkNone_train = np.zeros((n_training, 3), dtype=np.int32) | 
|  | 
|  | train_cnn_continue.Michel_train = np.zeros((n_training, 1), dtype=np.int32) | 
|  | 
| int | train_cnn_continue.ntot = 0 | 
|  | 
| list | train_cnn_continue.subdirs = [f for f in os.listdir(CNN_INPUT_DIR) if 'training' in f] | 
|  | 
| list | train_cnn_continue.filesX = [f for f in os.listdir(CNN_INPUT_DIR + '/' + dirname) if '_x.npy' in f] | 
|  | 
|  | train_cnn_continue.fnameY = fnameX.replace('_x.npy', '_y.npy') | 
|  | 
|  | train_cnn_continue.dataX = np.load(CNN_INPUT_DIR + '/' + dirname + '/' + fnameX) | 
|  | 
|  | train_cnn_continue.dataY = np.load(CNN_INPUT_DIR + '/' + dirname + '/' + fnameY) | 
|  | 
|  | train_cnn_continue.n = dataY.shape[0] | 
|  | 
|  | train_cnn_continue.n_testing = count_events(CNN_INPUT_DIR, 'testing') | 
|  | 
|  | train_cnn_continue.X_test = np.zeros((n_testing, PATCH_SIZE_W, PATCH_SIZE_D, 1), dtype=np.float32) | 
|  | 
|  | train_cnn_continue.EmTrkNone_test = np.zeros((n_testing, 3), dtype=np.int32) | 
|  | 
|  | train_cnn_continue.Michel_test = np.zeros((n_testing, 1), dtype=np.int32) | 
|  | 
|  | train_cnn_continue.h | 
|  | training ###############################  More... 
 | 
|  | 
|  | train_cnn_continue.score | 
|  |