Namespaces | Functions | Variables
run_cnn_1class.py File Reference

Go to the source code of this file.

Namespaces

 run_cnn_1class
 

Functions

def run_cnn_1class.load_model (name)
 

Variables

 run_cnn_1class.parser = argparse.ArgumentParser(description='Run CNN over a full 2D projection.')
 
 run_cnn_1class.help
 
 run_cnn_1class.default
 
 run_cnn_1class.args = parser.parse_args()
 
 run_cnn_1class.PATCH_SIZE_W = int(args.rows)
 
 run_cnn_1class.PATCH_SIZE_D = int(args.cols)
 
bool run_cnn_1class.crop_event = False
 
 run_cnn_1class.rootModule = args.module
 
 run_cnn_1class.rootFile = TFile(args.input)
 
list run_cnn_1class.keys = [rootModule+'/'+k.GetName()[:-4] for k in rootFile.Get(rootModule).GetListOfKeys() if '_raw' in k.GetName()]
 
 run_cnn_1class.evname = keys[int(args.event)]
 
 run_cnn_1class.raw
 
 run_cnn_1class.deposit
 
 run_cnn_1class.pdg
 
 run_cnn_1class.tracks
 
 run_cnn_1class.showers
 
 run_cnn_1class.full2d = int(args.full)
 
 run_cnn_1class.total_patches
 
 run_cnn_1class.inputs = np.zeros((total_patches, PATCH_SIZE_W, PATCH_SIZE_D), dtype=np.float32)
 
int run_cnn_1class.cnt_ind = 0
 
 run_cnn_1class.model_name = args.net
 
 run_cnn_1class.m = load_model(model_name)
 
 run_cnn_1class.loss
 
 run_cnn_1class.optimizer
 
 run_cnn_1class.pred = m.predict(inputs.reshape(inputs.shape[0], 1, PATCH_SIZE_W, PATCH_SIZE_D))
 
 run_cnn_1class.outputs = np.zeros((raw.shape[0], raw.shape[1]), dtype=np.float32)
 
 run_cnn_1class.fig
 
 run_cnn_1class.ax
 
 run_cnn_1class.figsize
 
 run_cnn_1class.cs = ax[0,0].pcolor(np.transpose(pdg & 0xFF), cmap='gist_ncar')