|
def | se_resnext.SEResNext (input_shape=None, depth=29, cardinality=8, width=64, weight_decay=5e-4, include_top=True, weights=None, input_tensor=None, pooling=None, classes=10) |
|
def | se_resnext.SEResNextImageNet (input_shape=None, depth=[3, cardinality=32, width=4, weight_decay=5e-4, include_top=True, weights=None, input_tensor=None, pooling=None, classes=1000) |
|
def | se_resnext.__initial_conv_block (input, weight_decay=5e-4) |
|
def | se_resnext.__initial_conv_block_inception (input, weight_decay=5e-4) |
|
def | se_resnext.__grouped_convolution_block (input, grouped_channels, cardinality, strides, weight_decay=5e-4) |
|
def | se_resnext.__bottleneck_block (input, filters=64, cardinality=8, strides=1, weight_decay=5e-4) |
|
def | se_resnext.__create_res_next (nb_classes, img_input, include_top, depth=29, cardinality=8, width=4, weight_decay=5e-4, pooling=None) |
|
def | se_resnext.__create_res_next_imagenet (nb_classes, img_input, include_top, depth, cardinality=32, width=4, weight_decay=5e-4, pooling=None) |
|