Namespaces | Variables
test.py File Reference

Go to the source code of this file.

Namespaces

 test
 

Variables

string test.__version__ = '1.0'
 
string test.__author__ = 'Saul Alonso-Monsalve'
 
string test.__email__ = "saul.alonso.monsalve@cern.ch"
 
 test.stream
 
 test.stdout
 
 test.level
 
 test.config = configparser.ConfigParser()
 
 test.SEED = int(config['random']['seed'])
 
 test.SHUFFLE = ast.literal_eval(config['random']['shuffle'])
 
 test.IMAGES_PATH = config['images']['path']
 
 test.VIEWS = int(config['images']['views'])
 
 test.PLANES = int(config['images']['planes'])
 
 test.CELLS = int(config['images']['cells'])
 
 test.STANDARDIZE = ast.literal_eval(config['images']['standardize'])
 
 test.DATASET_PATH = config['dataset']['path']
 
 test.PARTITION_PREFIX = config['dataset']['partition_prefix']
 
 test.LABELS_PREFIX = config['dataset']['labels_prefix']
 
 test.CHECKPOINT_PATH = config['model']['checkpoint_path']
 
 test.CHECKPOINT_PREFIX = config['model']['checkpoint_prefix']
 
 test.CHECKPOINT_SAVE_MANY = ast.literal_eval(config['model']['checkpoint_save_many'])
 
 test.CHECKPOINT_SAVE_BEST_ONLY = ast.literal_eval(config['model']['checkpoint_save_best_only'])
 
 test.PRINT_SUMMARY = ast.literal_eval(config['model']['print_summary'])
 
 test.BRANCHES = ast.literal_eval(config['model']['branches'])
 
 test.PARALLELIZE = ast.literal_eval(config['model']['parallelize'])
 
 test.OUTPUTS = int(config['model']['outputs'])
 
 test.OUTPUT_PATH = config['test']['output_path']
 
 test.OUTPUT_PREFIX = config['test']['output_prefix']
 
 test.CUT_NUE = float(config['test']['cut_nue'])
 
 test.CUT_NUMU = float(config['test']['cut_numu'])
 
 test.CUT_NUTAU = float(config['test']['cut_nutau'])
 
 test.CUT_NC = float(config['test']['cut_nc'])
 
 test.TEST_BATCH_SIZE = int(config['test']['batch_size'])
 
list test.test_values = []
 
dictionary test.TEST_PARAMS
 
 test.partition = pickle.load(partition_file)
 
 test.labels = pickle.load(labels_file)
 
 test.prediction_generator = DataGenerator(**TEST_PARAMS).generate(labels, partition['test'], False)
 
list test.files = [f for f in os.listdir(CHECKPOINT_PATH) if os.path.isfile(os.path.join(CHECKPOINT_PATH, f))]
 
 test.reverse
 
 test.r = re.compile(CHECKPOINT_PREFIX[1:] + '-.*-.*.h5')
 
 test.model
 
list test.is_antineutrino_target_names = ['neutrino', 'antineutrino', 'NULL']
 
list test.flavour_target_names = ['CC Numu', 'CC Nue', 'CC Nutau', 'NC']
 
list test.interaction_target_names = ['CC QE', 'CC Res', 'CC DIS', 'CC Other', 'NULL']
 
list test.categories_target_names
 
list test.protons_target_names = ['0', '1', '2', '>2']
 
list test.pions_target_names = ['0', '1', '2', '>2']
 
list test.pizeros_target_names = ['0', '1', '2', '>2']
 
list test.neutrons_target_names = ['0', '1', '2', '>2']
 
 test.Y_pred
 
 test.y_pred_categories = np.argmax(Y_pred, axis=1).reshape((Y_pred.shape[0], 1))
 
 test.Y_pred_flavour = np.zeros((Y_pred.shape[0], 4))
 
 test.y_test_categories = np.array([12 if aux['y_value'] == 13 else aux['y_value'] for aux in test_values]).reshape(y_pred_categories.shape)
 
 test.y_test_flavour = np.zeros(y_test_categories.shape, dtype=int)
 
 test.p = Y_pred[i]
 
 test.y_pred_flavour = np.argmax(Y_pred_flavour, axis=1)
 
 test.flavour_conf_matrix = confusion_matrix(y_pred_flavour, y_test_flavour)
 
 test.categories_conf_matrix = confusion_matrix(y_pred_categories, y_test_categories)
 
 test.weighted_conf_matrix = np.zeros((4,4), dtype='float32')
 
 test.cut_weighted_conf_matrix = np.zeros((4,4), dtype='float32')
 
 test.pred_flavour = int(y_pred_flavour[sample])
 
 test.test_flavour = int(y_test_flavour[sample])
 
 test.weight = test_values[sample]['fEventWeight']
 
string test.float_formatter = lambdax:"%.4f"
 
 test.formatter
 
 test.purity_conf_matrix = np.copy(cut_weighted_conf_matrix)
 
 test.row_sum = np.sum(purity_conf_matrix[i])
 
 test.efficiency_conf_matrix = cut_weighted_conf_matrix.astype('float32')/np.add.reduce(weighted_conf_matrix)
 
 test.y_pred_is_antineutrino = np.around(Y_pred[0]).reshape((Y_pred[0].shape[0], 1)).astype(int)
 
 test.y_pred_interaction = np.argmax(Y_pred[2], axis=1).reshape((Y_pred[2].shape[0], 1))
 
 test.y_pred_protons = np.argmax(Y_pred[3], axis=1).reshape((Y_pred[3].shape[0], 1))
 
 test.y_pred_pions = np.argmax(Y_pred[4], axis=1).reshape((Y_pred[4].shape[0], 1))
 
 test.y_pred_pizeros = np.argmax(Y_pred[5], axis=1).reshape((Y_pred[5].shape[0], 1))
 
 test.y_pred_neutrons = np.argmax(Y_pred[6], axis=1).reshape((Y_pred[6].shape[0], 1))
 
 test.y_test_is_antineutrino = np.array([aux['y_value'][0] for aux in test_values]).reshape(y_pred_is_antineutrino.shape)
 
 test.y_test_interaction = np.array([aux['y_value'][2] for aux in test_values]).reshape(y_pred_interaction.shape)
 
 test.y_test_protons = np.array([aux['y_value'][3] for aux in test_values]).reshape(y_pred_protons.shape)
 
 test.y_test_pions = np.array([aux['y_value'][4] for aux in test_values]).reshape(y_pred_pions.shape)
 
 test.y_test_pizeros = np.array([aux['y_value'][5] for aux in test_values]).reshape(y_pred_pizeros.shape)
 
 test.y_test_neutrons = np.array([aux['y_value'][6] for aux in test_values]).reshape(y_pred_neutrons.shape)
 
 test.is_antineutrino_conf_matrix = confusion_matrix(y_pred_is_antineutrino, y_test_is_antineutrino)
 
 test.interaction_conf_matrix = confusion_matrix(y_pred_interaction, y_test_interaction)
 
 test.protons_conf_matrix = confusion_matrix(y_pred_protons, y_test_protons)
 
 test.pions_conf_matrix = confusion_matrix(y_pred_pions, y_test_pions)
 
 test.pizeros_conf_matrix = confusion_matrix(y_pred_pizeros, y_test_pizeros)
 
 test.neutrons_conf_matrix = confusion_matrix(y_pred_neutrons, y_test_neutrons)
 
dictionary test.test_info