Namespaces | Functions | Variables
train_cnn_continue.py File Reference

Go to the source code of this file.

Namespaces

 train_cnn_continue
 

Functions

def train_cnn_continue.load_model (name)
 
def train_cnn_continue.save_model (model, name)
 

Variables

 train_cnn_continue.parser = argparse.ArgumentParser(description='Run CNN training on patches with a few different hyperparameter sets.')
 
 train_cnn_continue.help
 
 train_cnn_continue.default
 
 train_cnn_continue.args = parser.parse_args()
 
 train_cnn_continue.config = read_config(args.config)
 configuration ############################# More...
 
 train_cnn_continue.cfg_name = args.model
 
 train_cnn_continue.out_name = args.output
 
 train_cnn_continue.CNN_INPUT_DIR = config['training_on_patches']['input_dir']
 
 train_cnn_continue.PATCH_SIZE_W
 
 train_cnn_continue.PATCH_SIZE_D
 
 train_cnn_continue.img_rows
 
 train_cnn_continue.img_cols
 
 train_cnn_continue.batch_size = config['training_on_patches']['batch_size']
 
 train_cnn_continue.nb_epoch = config['training_on_patches']['nb_epoch']
 
 train_cnn_continue.nb_classes = config['training_on_patches']['nb_classes']
 
 train_cnn_continue.model = load_model(cfg_name)
 CNN commpilation ###########################. More...
 
 train_cnn_continue.sgd = SGD(lr=0.005, decay=1e-5, momentum=0.9, nesterov=True)
 
 train_cnn_continue.optimizer
 
 train_cnn_continue.loss
 
 train_cnn_continue.loss_weights
 
 train_cnn_continue.n_training = count_events(CNN_INPUT_DIR, 'training')
 read data sets ############################ More...
 
 train_cnn_continue.X_train = np.zeros((n_training, PATCH_SIZE_W, PATCH_SIZE_D, 1), dtype=np.float32)
 
 train_cnn_continue.EmTrkNone_train = np.zeros((n_training, 3), dtype=np.int32)
 
 train_cnn_continue.Michel_train = np.zeros((n_training, 1), dtype=np.int32)
 
int train_cnn_continue.ntot = 0
 
list train_cnn_continue.subdirs = [f for f in os.listdir(CNN_INPUT_DIR) if 'training' in f]
 
list train_cnn_continue.filesX = [f for f in os.listdir(CNN_INPUT_DIR + '/' + dirname) if '_x.npy' in f]
 
 train_cnn_continue.fnameY = fnameX.replace('_x.npy', '_y.npy')
 
 train_cnn_continue.dataX = np.load(CNN_INPUT_DIR + '/' + dirname + '/' + fnameX)
 
 train_cnn_continue.dataY = np.load(CNN_INPUT_DIR + '/' + dirname + '/' + fnameY)
 
 train_cnn_continue.n = dataY.shape[0]
 
 train_cnn_continue.n_testing = count_events(CNN_INPUT_DIR, 'testing')
 
 train_cnn_continue.X_test = np.zeros((n_testing, PATCH_SIZE_W, PATCH_SIZE_D, 1), dtype=np.float32)
 
 train_cnn_continue.EmTrkNone_test = np.zeros((n_testing, 3), dtype=np.int32)
 
 train_cnn_continue.Michel_test = np.zeros((n_testing, 1), dtype=np.int32)
 
 train_cnn_continue.h
 training ############################### More...
 
 train_cnn_continue.score