1 from keras.models
import Sequential
2 from keras.layers
import Input, Dense, Dropout, Flatten, BatchNormalization, SeparableConv2D
3 from keras
import regularizers, optimizers
4 from keras.layers.convolutional
import Conv2D, MaxPooling2D, AveragePooling2D
6 def my_model(input_shape=[500,500,3], classes=3):
14 model.add(Conv2D(64, kernel_size=(11,11), strides=4, padding=
'same', input_shape=input_shape, activation=
'relu'))
15 model.add(MaxPooling2D(pool_size=(4,4), strides=4))
16 model.add(BatchNormalization(axis=3))
18 model.add(Conv2D(32, kernel_size=(7,7), strides=2, padding=
'same', activation=
'relu'))
19 model.add(MaxPooling2D(pool_size=(2,2), strides=1))
20 model.add(BatchNormalization(axis=3))
22 model.add(Dropout(0.2))
35 model.add(Dropout(0.2))
42 model.add(Dropout(0.4))
46 model.add(Dense(classes, activation=
'softmax'))
def my_model(input_shape=[500, classes=3)