6 ''' Create a squeeze-excite block 9 filters: number of output filters 12 Returns: a keras tensor 15 channel_axis = 1
if K.image_data_format() ==
"channels_first" else -1
16 filters = init._keras_shape[channel_axis]
17 se_shape = (1, 1, filters)
19 se = GlobalAveragePooling2D()(init)
20 se = Reshape(se_shape)(se)
21 se = Dense(filters // ratio, activation=
'relu', kernel_initializer=
'he_normal', use_bias=
False)(se)
22 se = Dense(filters, activation=
'sigmoid', kernel_initializer=
'he_normal', use_bias=
False)(se)
24 if K.image_data_format() ==
'channels_first':
25 se = Permute((3, 1, 2))(se)
27 x = multiply([init, se])
29 def squeeze_excite_block(input, ratio=16)