BWFunc.cxx
Go to the documentation of this file.
1 //____________________________________________________________________________
2 /*
3  Copyright (c) 2003-2020, The GENIE Collaboration
4  For the full text of the license visit http://copyright.genie-mc.org
5 
6  Costas Andreopoulos <constantinos.andreopoulos \at cern.ch>
7  University of Liverpool & STFC Rutherford Appleton Laboratory
8 */
9 //____________________________________________________________________________
10 
11 #include <cassert>
12 
13 #include <TMath.h>
14 
15 #include "Framework/Utils/BWFunc.h"
17 
18 using namespace genie;
19 using namespace genie::constants;
20 
21 //
23  double W, int L, double mass, double width0, double norm)
24 {
25 //Inputs:
26 // - W: Invariant mass (GeV)
27 // - L: Resonance orbital angular momentum
28 // - mass: Resonance mass (GeV)
29 // - width0: Resonance width
30 // - norm: Breit Wigner norm
31 
32  //-- sanity checks
33  assert(mass > 0);
34  assert(width0 > 0);
35  assert(norm > 0);
36  assert(W > 0);
37  assert(L >= 0);
38 
39  //-- auxiliary parameters
40  double mN = kNucleonMass;
41  double mPi = kPi0Mass;
42  double m_2 = TMath::Power(mass, 2);
43  double mN_2 = TMath::Power(mN, 2);
44  double W_2 = TMath::Power(W, 2);
45 
46  double m=mass;
47  //m_aux1 m_aux2
48  double m_aux1= TMath::Power(mN+mPi, 2);
49  double m_aux2= TMath::Power(mN-mPi, 2);
50 
51  double BRPi0 = 0.994; //Npi Branching Ratio
52  double BRgamma0 = 0.006; //Ngamma Branching Ratio
53 
54  double widPi0 = width0*BRPi0;
55  double widgamma0= width0*BRgamma0;
56 
57  //-- calculate the L-dependent resonance width
58  double EgammaW= (W_2-mN_2)/(2*W);
59  double Egammam= (m_2-mN_2)/(2*m);
60 
61 
62  if(EgammaW<0) {
63 // cout<< "Two small W!!! W is lower than one Nucleon Mass!!!!"<<endl;
64  return 0;
65  }
66  //pPiW pion momentum
67  double pPiW = 0;
68  //
69  if(W_2>m_aux1) pPiW = TMath::Sqrt((W_2-m_aux1)*(W_2-m_aux2))/(2*W);
70 
71  double pPim = TMath::Sqrt((m_2-m_aux1)*(m_2-m_aux2))/(2*m);
72 
73  //double TPiW = pPiW*TMath::Power(pPiW*rDelta, 2*L)/(1+TMath::Power(pPiW*rDelta, 2));
74  //double TPim = pPim*TMath::Power(pPim*rDelta, 2*L)/(1+TMath::Power(pPim*rDelta, 2));
75 
76  // Form factors
77  //double fgammaW= 1/(TMath::Power(1+EgammaW*EgammaW/0.706, 2)*(1+EgammaW*EgammaW/3.519));
78  //double fgammam= 1/(TMath::Power(1+Egammam*Egammam/0.706, 2)*(1+Egammam*Egammam/3.519));
79  double fgammaW= 1/(TMath::Power(1+EgammaW*EgammaW/0.706, 2));
80  double fgammam= 1/(TMath::Power(1+Egammam*Egammam/0.706, 2));
81 
82 
83  double EgammaW_3=TMath::Power(EgammaW, 3);
84  double Egammam_3=TMath::Power(Egammam, 3);
85  double fgammaW_2=TMath::Power(fgammaW, 2);
86  double fgammam_2=TMath::Power(fgammam, 2);
87 
88  //double width = widPi0*(TPiW/TPim)+widgamma0*(EgammaW_3*fgammaW_2/(Egammam_3*fgammam_2));
89  double width = widPi0*TMath::Power((pPiW/pPim),3)+widgamma0*(EgammaW_3*fgammaW_2/(Egammam_3*fgammam_2));
90  //-- calculate the Breit Wigner function for the input W
91  double width_2 = TMath::Power( width, 2);
92  double W_m_2 = TMath::Power( W-mass, 2);
93 
94  double bw = (0.5/kPi) * (width/norm) / (W_m_2 + 0.25*width_2);
95 
96  return bw;
97 }
98 //______________________________________________________________________
100  double W, int L, double mass, double width0, double norm)
101 {
102 //Inputs:
103 // - W: Invariant mass (GeV)
104 // - L: Resonance orbital angular momentum
105 // - mass: Resonance mass (GeV)
106 // - width0: Resonance width
107 // - norm: Breit Wigner norm
108 
109  //-- sanity checks
110  assert(mass > 0);
111  assert(width0 > 0);
112  assert(norm > 0);
113  assert(W > 0);
114  assert(L >= 0);
115 
116  //-- auxiliary parameters
117  double mN = kNucleonMass;
118  double mPi = kPi0Mass;
119  double m_2 = TMath::Power(mass, 2);
120  double mN_2 = TMath::Power(mN, 2);
121  double mPi_2 = TMath::Power(mPi, 2);
122  double W_2 = TMath::Power(W, 2);
123 
124  //-- calculate the L-dependent resonance width
125  double qpW_2 = ( TMath::Power(W_2 - mN_2 - mPi_2, 2) - 4*mN_2*mPi_2 );
126  double qpM_2 = ( TMath::Power(m_2 - mN_2 - mPi_2, 2) - 4*mN_2*mPi_2 );
127  if(qpW_2 < 0) qpW_2 = 0;
128  if(qpM_2 < 0) qpM_2 = 0;
129  double qpW = TMath::Sqrt(qpW_2) / (2*W);
130  double qpM = TMath::Sqrt(qpM_2) / (2*mass);
131  double width = width0 * TMath::Power( qpW/qpM, 2*L+1 );
132 
133  //-- calculate the Breit Wigner function for the input W
134  double width_2 = TMath::Power( width, 2);
135  double W_m_2 = TMath::Power( W-mass, 2);
136 
137  double bw = (0.5/kPi) * (width/norm) / (W_m_2 + 0.25*width_2);
138  return bw;
139 }
140 //______________________________________________________________________
142  double W, double mass, double width, double norm)
143 {
144 //Inputs:
145 // - W: Invariant mass (GeV)
146 // - mass: Resonance mass (GeV)
147 // - width: Resonance width
148 // - norm: Breit Wigner norm
149 
150  //-- sanity checks
151  assert(mass > 0);
152  assert(width > 0);
153  assert(norm > 0);
154  assert(W > 0);
155 
156  //-- auxiliary parameters
157  double width_2 = TMath::Power( width, 2);
158  double W_m_2 = TMath::Power( W-mass, 2);
159 
160  //-- calculate the Breit Wigner function for the input W
161  double bw = (0.5/kPi) * (width/norm) / (W_m_2 + 0.25*width_2);
162  return bw;
163 }
164 //______________________________________________________________________
double BreitWigner(double W, double mass, double width, double norm)
Definition: BWFunc.cxx:141
Basic constants.
THE MAIN GENIE PROJECT NAMESPACE
Definition: AlgCmp.h:25
static const double kNucleonMass
Definition: Constants.h:77
static const double kPi0Mass
Definition: Constants.h:74
double BreitWignerLGamma(double W, int L, double mass, double width0, double norm)
Definition: BWFunc.cxx:22
double BreitWignerL(double W, int L, double mass, double width0, double norm)
Definition: BWFunc.cxx:99
auto norm(Vector const &v)
Return norm of the specified vector.
static const double kPi
Definition: Constants.h:37