Functions
d3sigma_calc.C File Reference
#include "code/singlekaon_xsec.cxx"
#include <TMath.h>
#include <TString.h>

Go to the source code of this file.

Functions

void d3sigma_calc ()
 

Function Documentation

void d3sigma_calc ( )

Definition at line 11 of file d3sigma_calc.C.

11  {
12 
13  // ***************************
14  // * STEERING PARAMETERS *
15  // ***************************
16  const int verbose = 0; // debugging mode on/off
17  const int COMP = 10; // time complexity (runs with O(n^3))
18  const int pLeptonIsUsed = 1; // use momentum instead of kinetic energy
19  const int thetaIsUsed = 1; // use angle instead of cosine
20  const int varPhiKqIsUsed = 1; // use phi_kq as function of E_nu
21  const double pi = TMath::Pi();
22 
23  // NOTE: All results for a changing "pleptonIsUsed" and "thetaIsUsed" give the same results within
24  // about 1%. Here, both are set to 1 because this is closest to what the Fortran code does.
25  // To use this in comparison, it is important to use the same parameters as d4sigma_calc.C !
26 
27  const int type = 2; // lepton: 1=electron, 2=muon, 3=tau
28  const int reac = 3; // reaction: 1=NN, 2=NP, 3=PP
29 
30  // Phi_kq will run with energy from phikqmin to phikqmax (can be constant)
31  double phikqmin, phikqmax, FRAC; // used to set value of phi_kq [pi]
32  if (varPhiKqIsUsed) {
33  phikqmin = 0.50*pi;
34  phikqmax = 0.55*pi;
35  } else {
36  printf("Please enter phi_kq as a fraction of pi: ");
37  scanf("%lf", &FRAC);
38  printf("Phi_kq set to fixed value %.2lf*pi...\n", FRAC);
39  phikqmin = FRAC*pi;
40  phikqmax = FRAC*pi;
41  }
42 
43  double Mlep = 0.; // lepton mass [GeV]
44  if (type==1) Mlep = 0.510998928e-3;
45  else if (type==2) Mlep = 0.1056583715;
46  else if (type==3) Mlep = 1.77682;
47  else {std::cout<<"ERROR: Invalid type!"<<std::endl; return;}
48 
49  double Mkaon = 0.; // kaon mass [GeV]
50  if (reac==1) Mkaon = 0.493677;
51  else if (reac==2) Mkaon = 0.497614;
52  else if (reac==3) Mkaon = 0.493677;
53  else {std::cout<<"ERROR: Invalid reaction!"<<std::endl; return;}
54 
55  double Enu = 0.; // neutrino energy [GeV]
57  inst->init(Enu, type, reac);
58 
59  double Emin = inst->threshold;
60  double Emax = 3.1;
61  int Esteps = (int)(20.0*(Emax-Emin));
62 
63  // Initialisation of variables
64  int i,j,k,itenu;
65  const int nsteps2 = 10*COMP, nsteps1 = 10*COMP, nsteps3 = 10*COMP;
66  double varmin1, varmin2, varmin3, varmax1, varmax2, varmax3, temp;
67  double binsvar2[nsteps2+1], binsvar1[nsteps1+1], binsvar3[nsteps3+1];
68  double varvals2[nsteps2], varvals1[nsteps1], varvals3[nsteps3];
69 
70  double Tlep, Elep; // LEPTON ENERGY [GeV]
71  double Tkaon, Ekaon; // KAON ENERGY [GeV]
72  double theta; // LEPTON ANGLE [rad] - FIXED VALUE IN 3D CASE !!!
73  double phikq; // KAON ANGLE [rad]
74 
75  double diff3sigma;
76  double diff2sigma;
77  double diff1sigma;
78  double sigma; // CROSS SECTION [cm^2]
79 
80  std::cout << std::endl;
81  std::cout << " E [GeV]\txsec [cm^2]" << std::endl;
82  std::cout << "-----------------------------" << std::endl;
83 
84  std::string fpath = "./data/";
85  std::string fname;
86  if (varPhiKqIsUsed) fname = "d3sigma_phi=var.out";
87  else fname = Form("d3sigma_phi=%.2lfpi.out",FRAC);
88  FILE *outfile = fopen((fpath+fname).c_str(),"w");
89  fprintf(outfile, "# E [GeV]\txsec [cm^2]\n");
90  fprintf(outfile, "#-----------------------------\n");
91 
92  for (itenu=0; itenu<=Esteps; itenu++) {
93 
94  // Initialisation of energy
95  Enu = Emin + itenu*0.05;
96  inst->init(Enu, type, reac);
97 
98  // Value of phi_kq is a linear function of energy (3D case)
99  phikq = phikqmin + (double)itenu/Esteps*(phikqmax-phikqmin);
100 
101  // Integration ranges
102  varmin1 = 0.; varmax1 = Enu-Mkaon-Mlep; // Tkaon
103  // varmin2, varmax2 filled in loop below
104  if (thetaIsUsed) { // theta
105  varmin3 = 0.;
106  varmax3 = pi;
107  } else { // cos(theta)
108  varmin3 = -1.0;
109  varmax3 = 1.0;
110  }
111 
112  // Calculate edges of bins
113  for (i=0; i<=nsteps1; i++) {
114  binsvar1[i] = varmin1 + i*(varmax1-varmin1)/nsteps1;
115  }
116  // binsvar2 filled in loop below
117  for (k=0; k<=nsteps3; k++) {
118  if (thetaIsUsed) {
119  temp = varmax3 - k*(varmax3-varmin3)/nsteps3; // theta
120  binsvar3[k] = cos(temp); // cos(theta)
121  } else {
122  binsvar3[k] = varmin3 + k*(varmax3-varmin3)/nsteps3;
123  }
124  if (verbose && !itenu && k)
125  std::cout << "Bin #" << k << " has cos(theta) = " << 0.5*(binsvar3[k]+binsvar3[k-1])
126  << ",\t width = " << binsvar3[k]-binsvar3[k-1] << std::endl;
127  }
128 
129  // Calculate central bin values (average of left and right edge of bin)
130  for (i=0; i<nsteps1; i++) varvals1[i] = 0.5*(binsvar1[i+1]+binsvar1[i]);
131  // binsvar2 filled in loop below
132  for (k=0; k<nsteps3; k++) varvals3[k] = 0.5*(binsvar3[k+1]+binsvar3[k]);
133 
134  sigma = 0.; // reset integral over Tkaon
135 
136  // **********************
137  // Integrate over Tkaon
138  // **********************
139  for (i=0; i<nsteps1; i++) {
140  if (binsvar1[i+1]==binsvar1[i]) continue;
141  Tkaon = varvals1[i];
142  Ekaon = Tkaon+Mkaon;
143 
144  // ----------------------------------------------
145  // Define binning for second integration variable
146  // ----------------------------------------------
147  if (pLeptonIsUsed) { // plep
148  varmin2 = 0.;
149  varmax2 = sqrt((Enu-Ekaon)*(Enu-Ekaon)-Mlep*Mlep);
150  } else { // Tlep
151  varmin2 = 0.;
152  varmax2 = Enu-Ekaon-Mlep;
153  }
154  for (j=0; j<=nsteps2; j++) {
155  temp = varmin2 + j*(varmax2-varmin2)/nsteps2; // plep OR Tlep
156  if (pLeptonIsUsed) {
157  binsvar2[j] = sqrt(temp*temp+Mlep*Mlep)-Mlep; // plep -> Tlep
158  } else {
159  binsvar2[j] = temp; // Tlep
160  }
161  if (verbose && !pLeptonIsUsed && !itenu && j)
162  std::cout << "Bin edge #" << j << " has Tlep = " << binsvar2[j]
163  << ",\t width = " << binsvar2[j]-binsvar2[j-1] << std::endl;
164  }
165  for (j=0; j<nsteps2; j++) varvals2[j] = 0.5*(binsvar2[j+1]+binsvar2[j]);
166  // ----------------------------------------------
167 
168  diff1sigma = 0.; // reset integral over plep
169 
170  // *******************************
171  // Integrate over plep (or Tlep)
172  // *******************************
173  for (j=0; j<nsteps2; j++) {
174  if (binsvar2[j+1]==binsvar2[j]) continue;
175  Tlep = varvals2[j];
176  Elep = Tlep+Mlep;
177 
178  diff2sigma = 0.; // reset integral over theta
179 
180  // ************************************
181  // Integrate over theta (or costheta)
182  // ************************************
183  for (k=0; k<nsteps3; k++) {
184  if (binsvar3[k+1]==binsvar3[k]) continue;
185  theta = acos(varvals3[k]);
186 
187  // Calculate 3D differential xsec
188  diff3sigma = inst->diffxsec(Tlep,Tkaon,theta,phikq);
189  diff3sigma *= pow(2*pi,2);
190 
191  // This Jacobian no longer needed, since binning is adjusted to cos(theta)
192  // diff3sigma *= sin(theta);
193 
194  diff2sigma += diff3sigma*(binsvar3[k+1]-binsvar3[k]);
195  }
196 
197  // Multiplication with Jacobian for transformation plep->Tlep (it is E/p)
198  diff2sigma *= Elep/sqrt(Elep*Elep-Mlep*Mlep);
199 
200  diff1sigma += diff2sigma*(binsvar2[j+1]-binsvar2[j]);
201  }
202 
203  sigma += diff1sigma*(binsvar1[i+1]-binsvar1[i]);
204  }
205 
206  // Total cross section for this energy
207  std::cout << Form("%12.6lf",Enu) << "\t" << sigma << std::endl;
208  fprintf(outfile, "%lf\t%e\n",Enu,sigma);
209  }
210 
211  fclose(outfile);
212  std::cout << std::endl << "Output written to file: " << fpath << fname << std::endl << std::endl;
213 }
size_t i(0)
art art Framework Principal Run temp
std::string string
Definition: nybbler.cc:12
const double pi
Definition: LAr.C:31
constexpr T pow(T x)
Definition: pow.h:75
the ParameterSet object passed in for the configuration of a destination should be the only source that can affect the behavior of that destination This is to eliminate the dependencies of configuring a destination from multiple mostly from the defaults It suppresses possible glitches about changing the configuration file somewhere outside of a destination segament might still affect the behavior of that destination In the previous configuration for a specific the value of a certain e may come from following and have been suppressed It the configuring ParameterSet object for each destination will be required to carry a parameter list as complete as possible If a parameter still cannot be found in the ParameterSet the configuration code will go look for a hardwired default directly The model is a great simplicity comparing with the previous especially when looking for default values Another great advantage is most of the parameters now have very limited places that allows to appear Usually they can only appear at one certain level in a configuration file For in the old configuring model or in a default ParameterSet object inside of a or in a category or in a severity object This layout of multiple sources for a single parameter brings great confusion in both writing a configuration and in processing the configuration file Under the new the only allowed place for the parameter limit to appear is inside of a category which is inside of a destination object Other improvements simplify the meaning of a destination name In the old a destination name has multiple folds of meanings the e cout and cerr have the special meaning of logging messages to standard output or standard error the name also serves as the output filename if the destination is a file these names are also references to look up for detailed configurations in configuring the MessageFacility The multi purpose of the destination name might cause some unwanted behavior in either writing or parsing the configuration file To amend in the new model the destination name is now merely a name for a which might represent the literal purpose of this or just an id All other meanings of the destinations names now go into the destination ParameterSet as individual such as the type parameter and filename parameter Following is the deatiled rule for the new configuring Everything that is related with MessageFacility configuration must be wrapped in a single ParameterSet object with the name MessageFacility The MessageFacility ParameterSet object contains a series of top level parameters These parameters can be chosen a vector of string listing the name of debug enabled models Or use *to enable debug messages in all modules a vector of string a vector of string a vector of string a ParameterSet object containing the list of all destinations The destinations ParameterSet object is a combination of ParameterSet objects for individual destinations There are two types of destinations that you can insert in the destinations ParameterSet ordinary including cout
double diffxsec(double Tlep, double Tkaon, double theta, double phikq)
these are called *plugin *libraries Plugin libraries are loaded by the *LibraryManager *see above The source file in which a module is implemented must be named< module > _plugin cc It must contain an invocation of the *DEFINE_EDM_PLUGIN *macro The *DEFINE_EDM_PLUGIN *macro is responsible for writing the appropriate *factory **function and that takes a const reference to a *ParameterSet *and that returns a newly created instance of the associated module type
ServiceRegistry * inst
double Emax
void init(double Etot, int type, int reac)