Functions
d4sigma_calc.C File Reference
#include "code/singlekaon_xsec.cxx"
#include <TMath.h>
#include <TString.h>

Go to the source code of this file.

Functions

void d4sigma_calc ()
 

Function Documentation

void d4sigma_calc ( )

Definition at line 11 of file d4sigma_calc.C.

11  {
12 
13  // ***************************
14  // * STEERING PARAMETERS *
15  // ***************************
16  const int verbose = 0; // debugging mode on/off
17  const int pLeptonIsUsed = 1; // binning for momentum instead of kinetic energy
18  const int thetaIsUsed = 1; // binning for angle instead of cosine
19  const double pi = TMath::Pi();
20 
21  // NOTE: All results for a changing "pleptonIsUsed" and "thetaIsUsed" give the same results within
22  // about 1%. Here, both are set to 1 because this is closest to what the Fortran code does.
23  // For making differential histograms, it may be convenient to use other combinations.
24 
25  const int type = 2; // lepton: 1=electron, 2=muon, 3=tau
26  const int reac = 3; // reaction: 1=NN, 2=NP, 3=PP
27 
28  int COMP; // time complexity (runs with O(n^4))
29  printf("Please enter time complexity: ");
30  scanf("%d", &COMP);
31  printf("COMP set to %d...\n", COMP);
32 
33  double Mlep = 0.; // lepton mass [GeV]
34  if (type==1) Mlep = 0.510998928e-3;
35  else if (type==2) Mlep = 0.1056583715;
36  else if (type==3) Mlep = 1.77682;
37  else {std::cout<<"ERROR: Invalid type!"<<std::endl; return;}
38 
39  double Mkaon = 0.; // kaon mass [GeV]
40  if (reac==1) Mkaon = 0.493677;
41  else if (reac==2) Mkaon = 0.497614;
42  else if (reac==3) Mkaon = 0.493677;
43  else {std::cout<<"ERROR: Invalid reaction!"<<std::endl; return;}
44 
45  double Enu = 0.; // neutrino energy [GeV]
47  inst->init(Enu, type, reac);
48 
49  double Emin = inst->threshold;
50  double Emax = 3.1;
51  int Esteps = (int)(20.0*(Emax-Emin));
52 
53  // Initialisation of variables
54  int i,j,k,l,itenu;
55  const int nsteps1 = 10*COMP, nsteps2 = 10*COMP, nsteps3 = 10*COMP, nsteps4 = 2*COMP;
56  double varmin1, varmin2, varmin3, varmin4, varmax1, varmax2, varmax3, varmax4, temp;
57  double binsvar1[nsteps1+1], binsvar2[nsteps2+1], binsvar3[nsteps3+1], binsvar4[nsteps4+1];
58  double varvals1[nsteps1], varvals2[nsteps2], varvals3[nsteps3], varvals4[nsteps4];
59 
60  double Tlep, Elep; // LEPTON ENERGY [GeV]
61  double Tkaon, Ekaon; // KAON ENERGY [GeV]
62  double theta; // LEPTON ANGLE [rad]
63  double phikq; // KAON ANGLE [rad]
64 
65  double diff4sigma;
66  double diff3sigma;
67  double diff2sigma;
68  double diff1sigma;
69  double sigma; // CROSS SECTION [cm^2]
70 
71  std::cout << std::endl;
72  std::cout << " E [GeV]\txsec [cm^2]" << std::endl;
73  std::cout << "-----------------------------" << std::endl;
74 
75  std::string fpath = "./data/";
76  std::string fname = "d4sigma_calc.out";
77  FILE *outfile = fopen((fpath+fname).c_str(),"w");
78  fprintf(outfile, "# E [GeV]\txsec [cm^2]\n");
79  fprintf(outfile, "#-----------------------------\n");
80 
81  for (itenu=0; itenu<=Esteps; itenu++) {
82 
83  // Initialisation of energy
84  Enu = Emin + itenu*0.05;
85  inst->init(Enu, type, reac);
86 
87  // Integration ranges
88  varmin1 = 0.; varmax1 = Enu-Mkaon-Mlep; // Tkaon
89  // varmin2, varmax2 filled in loop below
90  if (thetaIsUsed) { // theta
91  varmin3 = 0.;
92  varmax3 = pi;
93  } else { // cos(theta)
94  varmin3 = -1.0;
95  varmax3 = 1.0;
96  }
97  varmin4 = 0.; varmax4 = 2.*pi; // phi_kq
98 
99  // Calculate edges of bins
100  for (i=0; i<=nsteps1; i++) {
101  binsvar1[i] = varmin1 + i*(varmax1-varmin1)/nsteps1;
102  }
103  // binsvar2 filled in loop below
104  for (k=0; k<=nsteps3; k++) {
105  if (thetaIsUsed) {
106  temp = varmax3 - k*(varmax3-varmin3)/nsteps3; // theta
107  binsvar3[k] = cos(temp); // cos(theta)
108  } else {
109  binsvar3[k] = varmin3 + k*(varmax3-varmin3)/nsteps3;
110  }
111  if (verbose && !itenu && k)
112  std::cout << "Bin #" << k << " has cos(theta) = " << 0.5*(binsvar3[k]+binsvar3[k-1])
113  << ",\t width = " << binsvar3[k]-binsvar3[k-1] << std::endl;
114  }
115  for (l=0; l<=nsteps4; l++) {
116  binsvar4[l] = varmin4 + l*(varmax4-varmin4)/nsteps4;
117  }
118 
119  // Calculate central bin values (average of left and right edge of bin)
120  for (i=0; i<nsteps1; i++) varvals1[i] = 0.5*(binsvar1[i+1]+binsvar1[i]);
121  // binsvar2 filled in loop below
122  for (k=0; k<nsteps3; k++) varvals3[k] = 0.5*(binsvar3[k+1]+binsvar3[k]);
123  for (l=0; l<nsteps4; l++) varvals4[l] = 0.5*(binsvar4[l+1]+binsvar4[l]);
124 
125  // CALCULATE CROSS-SECTION
126  // -----------------------
127  sigma = 0.; // reset integral over Tkaon
128 
129  // **********************
130  // Integrate over Tkaon
131  // **********************
132  for (i=0; i<nsteps1; i++) {
133  if (binsvar1[i+1]==binsvar1[i]) continue;
134  Tkaon = varvals1[i];
135  Ekaon = Tkaon+Mkaon;
136 
137  // ----------------------------------------------
138  // Define binning for second integration variable
139  // ----------------------------------------------
140  if (pLeptonIsUsed) { // plep
141  varmin2 = 0.;
142  varmax2 = sqrt((Enu-Ekaon)*(Enu-Ekaon)-Mlep*Mlep);
143  } else { // Tlep
144  varmin2 = 0.;
145  varmax2 = Enu-Ekaon-Mlep;
146  }
147  for (j=0; j<=nsteps2; j++) {
148  temp = varmin2 + j*(varmax2-varmin2)/nsteps2; // plep OR Tlep
149  if (pLeptonIsUsed) {
150  binsvar2[j] = sqrt(temp*temp+Mlep*Mlep)-Mlep; // plep -> Tlep
151  } else {
152  binsvar2[j] = temp; // Tlep
153  }
154  if (verbose && !pLeptonIsUsed && !itenu && j)
155  std::cout << "Bin edge #" << j << " has Tlep = " << binsvar2[j]
156  << ",\t width = " << binsvar2[j]-binsvar2[j-1] << std::endl;
157  }
158  for (j=0; j<nsteps2; j++) varvals2[j] = 0.5*(binsvar2[j+1]+binsvar2[j]);
159  // ----------------------------------------------
160 
161  diff1sigma = 0.; // reset integral over plep
162 
163  // *******************************
164  // Integrate over plep (or Tlep)
165  // *******************************
166  for (j=0; j<nsteps2; j++) {
167  if (binsvar2[j+1]==binsvar2[j]) continue;
168  Tlep = varvals2[j];
169  Elep = Tlep+Mlep;
170 
171  diff2sigma = 0.; // reset integral over theta
172 
173  // ************************************
174  // Integrate over theta (or costheta)
175  // ************************************
176  for (k=0; k<nsteps3; k++) {
177  if (binsvar3[k+1]==binsvar3[k]) continue;
178  theta = acos(varvals3[k]);
179 
180  diff3sigma = 0.; // reset integral over phikq
181 
182  // **********************
183  // Integrate over phikq
184  // **********************
185  for (l=0; l<nsteps4; l++) {
186  if (binsvar4[l+1]==binsvar4[l]) continue;
187  phikq = varvals4[l];
188 
189  // Calculate 4D differential xsec
190  diff4sigma = inst->diffxsec(Tlep,Tkaon,theta,phikq);
191  diff4sigma *= 2*pi;
192 
193  // Multiply by bin width
194  diff3sigma += diff4sigma*(binsvar4[l+1]-binsvar4[l]);
195  }
196 
197  // This Jacobian no longer needed, since binning is adjusted to cos(theta)
198  // diff3sigma *= sin(theta);
199 
200  diff2sigma += diff3sigma*(binsvar3[k+1]-binsvar3[k]);
201  }
202 
203  // Multiplication with Jacobian for transformation plep->Tlep (it is E/p)
204  diff2sigma *= Elep/sqrt(Elep*Elep-Mlep*Mlep);
205 
206  diff1sigma += diff2sigma*(binsvar2[j+1]-binsvar2[j]);
207  }
208 
209  sigma += diff1sigma*(binsvar1[i+1]-binsvar1[i]);
210  }
211 
212  // Total cross section for this energy
213  std::cout << Form("%12.6lf",Enu) << "\t" << sigma << std::endl;
214  fprintf(outfile, "%lf\t%e\n",Enu,sigma);
215  }
216 
217  fclose(outfile);
218  std::cout << std::endl << "Output written to file: " << fpath << fname << std::endl << std::endl;
219 }
size_t i(0)
art art Framework Principal Run temp
std::string string
Definition: nybbler.cc:12
const double pi
Definition: LAr.C:31
the ParameterSet object passed in for the configuration of a destination should be the only source that can affect the behavior of that destination This is to eliminate the dependencies of configuring a destination from multiple mostly from the defaults It suppresses possible glitches about changing the configuration file somewhere outside of a destination segament might still affect the behavior of that destination In the previous configuration for a specific the value of a certain e may come from following and have been suppressed It the configuring ParameterSet object for each destination will be required to carry a parameter list as complete as possible If a parameter still cannot be found in the ParameterSet the configuration code will go look for a hardwired default directly The model is a great simplicity comparing with the previous especially when looking for default values Another great advantage is most of the parameters now have very limited places that allows to appear Usually they can only appear at one certain level in a configuration file For in the old configuring model or in a default ParameterSet object inside of a or in a category or in a severity object This layout of multiple sources for a single parameter brings great confusion in both writing a configuration and in processing the configuration file Under the new the only allowed place for the parameter limit to appear is inside of a category which is inside of a destination object Other improvements simplify the meaning of a destination name In the old a destination name has multiple folds of meanings the e cout and cerr have the special meaning of logging messages to standard output or standard error the name also serves as the output filename if the destination is a file these names are also references to look up for detailed configurations in configuring the MessageFacility The multi purpose of the destination name might cause some unwanted behavior in either writing or parsing the configuration file To amend in the new model the destination name is now merely a name for a which might represent the literal purpose of this or just an id All other meanings of the destinations names now go into the destination ParameterSet as individual such as the type parameter and filename parameter Following is the deatiled rule for the new configuring Everything that is related with MessageFacility configuration must be wrapped in a single ParameterSet object with the name MessageFacility The MessageFacility ParameterSet object contains a series of top level parameters These parameters can be chosen a vector of string listing the name of debug enabled models Or use *to enable debug messages in all modules a vector of string a vector of string a vector of string a ParameterSet object containing the list of all destinations The destinations ParameterSet object is a combination of ParameterSet objects for individual destinations There are two types of destinations that you can insert in the destinations ParameterSet ordinary including cout
double diffxsec(double Tlep, double Tkaon, double theta, double phikq)
these are called *plugin *libraries Plugin libraries are loaded by the *LibraryManager *see above The source file in which a module is implemented must be named< module > _plugin cc It must contain an invocation of the *DEFINE_EDM_PLUGIN *macro The *DEFINE_EDM_PLUGIN *macro is responsible for writing the appropriate *factory **function and that takes a const reference to a *ParameterSet *and that returns a newly created instance of the associated module type
ServiceRegistry * inst
double Emax
void init(double Etot, int type, int reac)