1 #define AVO 6.022e23 //Avogadro's number (#/mol) 2 #define EMASS 9.109e-31*CLHEP::kg 3 #define MillerDriftSpeed true 5 #define GASGAP 0.25*CLHEP::cm //S2 generation region 6 #define BORDER 0*CLHEP::cm //liquid-gas border z-coordinate 8 #define QE_EFF 1 //a base or maximum quantum efficiency 9 #define phe_per_e 1 //S2 gain for quick studies 12 #define WIN 0&&CLHEP::mm //top Cu block (also, quartz window) 13 #define TOP 0 //top grid wires 14 #define ANE 0 //anode mesh 15 #define SRF 0 //liquid-gas interface 16 #define GAT 0 //gate grid 17 #define CTH 0 //cathode grid 18 #define BOT 0 //bottom PMT grid 19 #define PMT 0 //bottom Cu block and PMTs 20 #define MIN_ENE -1*CLHEP::eV //lets you turn NEST off BELOW a certain energy 21 #define MAX_ENE 1.*CLHEP::TeV //lets you turn NEST off ABOVE a certain energy 22 #define HIENLIM 5*CLHEP::MeV //energy at which Doke model used exclusively 23 #define R_TOL 0.2*CLHEP::mm //tolerance (for edge events) 24 #define R_MAX 1*CLHEP::km //for corraling diffusing electrons 25 #define Density_LXe 2.9 //reference density for density-dep. effects 26 #define Density_LAr 1.393 27 #define Density_LNe 1.207 28 #define Density_LKr 2.413 30 #include "Geant4/Randomize.hh" 31 #include "Geant4/G4Ions.hh" 32 #include "Geant4/G4OpticalPhoton.hh" 33 #include "Geant4/G4VProcess.hh" 38 #include "CLHEP/Random/RandGauss.h" 39 #include "CLHEP/Random/RandFlat.h" 87 CLHEP::RandGauss GaussGen(
fEngine);
88 CLHEP::RandFlat UniformGen(
fEngine);
102 bool fTrackSecondariesFirst =
false;
103 bool fExcitedNucleus =
false;
104 bool fVeryHighEnergy =
false;
106 bool fMultipleScattering =
false;
109 if( aTrack.GetParentID() == 0 && aTrack.GetCurrentStepNumber() == 1 ) {
110 fExcitedNucleus =
false;
111 fVeryHighEnergy =
false;
113 fMultipleScattering =
false;
116 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
117 G4ParticleDefinition *pDef = aParticle->GetDefinition();
118 G4String particleName = pDef->GetParticleName();
119 const G4Material* aMaterial = aStep.GetPreStepPoint()->GetMaterial();
120 const G4Material* bMaterial = aStep.GetPostStepPoint()->GetMaterial();
122 if((particleName ==
"neutron" || particleName ==
"antineutron") &&
123 aStep.GetTotalEnergyDeposit() <= 0)
131 G4Element *ElementA = NULL, *ElementB = NULL;
133 const G4ElementVector* theElementVector1 =
134 aMaterial->GetElementVector();
135 ElementA = (*theElementVector1)[0];
138 const G4ElementVector* theElementVector2 =
139 bMaterial->GetElementVector();
140 ElementB = (*theElementVector2)[0];
142 G4int z1,z2,j=1; G4bool NobleNow=
false,NobleLater=
false;
143 if (ElementA) z1 = (G4int)(ElementA->GetZ());
else z1 = -1;
144 if (ElementB) z2 = (G4int)(ElementB->GetZ());
else z2 = -1;
145 if ( z1==2 || z1==10 || z1==18 || z1==36 || z1==54 ) {
155 if ( z2==2 || z2==10 || z2==18 || z2==36 || z2==54 ) {
166 if ( !NobleNow && !NobleLater )
171 G4StepPoint* pPreStepPoint = aStep.GetPreStepPoint();
172 G4StepPoint* pPostStepPoint = aStep.GetPostStepPoint();
173 G4ThreeVector
x1 = pPostStepPoint->GetPosition();
174 G4ThreeVector x0 = pPreStepPoint->GetPosition();
175 G4double evtStrt = pPreStepPoint->GetGlobalTime();
176 G4double
t0 = pPreStepPoint->GetLocalTime();
177 G4double
t1 = pPostStepPoint->GetLocalTime();
183 G4bool outside =
false, inside =
false, InsAndOuts =
false;
184 G4MaterialPropertiesTable* aMaterialPropertiesTable =
185 aMaterial->GetMaterialPropertiesTable();
186 if ( NobleNow && !NobleLater ) outside =
true;
187 if ( !NobleNow && NobleLater ) {
188 aMaterial = bMaterial; inside =
true; z1 = z2;
189 aMaterialPropertiesTable = bMaterial->GetMaterialPropertiesTable();
191 if ( NobleNow && NobleLater &&
192 aMaterial->GetDensity() != bMaterial->GetDensity() )
197 G4double nDensity = Density*
AVO;
198 G4int Phase = aMaterial->GetState();
199 G4double ElectricField(0.), FieldSign(0.);
200 G4bool GlobalFields =
false;
203 ElectricField = aMaterialPropertiesTable->GetConstProperty(
"ELECTRICFIELD");
207 if ( x1[2] <
WIN && x1[2] >
TOP && Phase == kStateGas )
208 ElectricField = aMaterialPropertiesTable->GetConstProperty(
"ELECTRICFIELDWINDOW");
209 else if ( x1[2] <
TOP && x1[2] >
ANE && Phase == kStateGas )
210 ElectricField = aMaterialPropertiesTable->GetConstProperty(
"ELECTRICFIELDTOP");
211 else if ( x1[2] <
ANE && x1[2] >
SRF && Phase == kStateGas )
212 ElectricField = aMaterialPropertiesTable->
213 GetConstProperty(
"ELECTRICFIELDANODE");
214 else if ( x1[2] <
SRF && x1[2] >
GAT && Phase == kStateLiquid )
215 ElectricField = aMaterialPropertiesTable->
216 GetConstProperty(
"ELECTRICFIELDSURFACE");
217 else if ( x1[2] <
GAT && x1[2] >
CTH && Phase == kStateLiquid )
218 ElectricField = aMaterialPropertiesTable->
219 GetConstProperty(
"ELECTRICFIELDGATE");
220 else if ( x1[2] <
CTH && x1[2] >
BOT && Phase == kStateLiquid )
221 ElectricField = aMaterialPropertiesTable->
222 GetConstProperty(
"ELECTRICFIELDCATHODE");
223 else if ( x1[2] <
BOT && x1[2] >
PMT && Phase == kStateLiquid )
224 ElectricField = aMaterialPropertiesTable->
225 GetConstProperty(
"ELECTRICFIELDBOTTOM");
227 ElectricField = aMaterialPropertiesTable->
228 GetConstProperty(
"ELECTRICFIELD");
230 if ( ElectricField >= 0 ) FieldSign = 1;
else FieldSign = -1;
232 G4double Temperature = aMaterial->GetTemperature();
233 G4double ScintillationYield, ResolutionScale, R0 = 1.0*
CLHEP::um,
234 DokeBirks[3], ThomasImel = 0.00, delta = 1*
CLHEP::mm;
235 DokeBirks[0] = 0.00; DokeBirks[2] = 1.00;
240 ScintillationYield = 1 / (41.3*
CLHEP::eV);
242 ResolutionScale = 0.2;
249 ScintillationYield = 1 / (29.2*
CLHEP::eV);
251 ResolutionScale = 0.13;
254 tau3 = GaussGen.fire(15.4e3*
CLHEP::ns,200*CLHEP::ns);
257 ScintillationYield = 1 / (19.5*
CLHEP::eV);
259 ResolutionScale = 0.107;
262 ThomasImel = 0.156977*
pow(ElectricField,-0.1);
263 DokeBirks[0] = 0.07*
pow((ElectricField/1.0e3),-0.85);
268 DokeBirks[0] = 0.0003;
270 } nDensity /= 39.948;
272 tau1 = GaussGen.fire(6.5*CLHEP::ns,0.8*CLHEP::ns);
273 tau3 = GaussGen.fire(1300*CLHEP::ns,50*CLHEP::ns);
274 tauR = GaussGen.fire(0.8*CLHEP::ns,0.2*CLHEP::ns);
277 if ( Phase == kStateGas ) ScintillationYield = 1 / (30.0*
CLHEP::eV);
278 else ScintillationYield = 1 / (15.0*
CLHEP::eV);
280 ResolutionScale = 0.05;
282 tau1 = GaussGen.fire(2.8*CLHEP::ns,.04*CLHEP::ns);
283 tau3 = GaussGen.fire(93.*CLHEP::ns,1.1*CLHEP::ns);
284 tauR = GaussGen.fire(12.*CLHEP::ns,.76*CLHEP::ns);
287 default: nDensity /= 131.293;
288 ScintillationYield = 48.814+0.80877*Density+2.6721*
pow(Density,2.);
293 ResolutionScale = 1.00 *
294 (0.12724-0.032152*Density-0.0013492*
pow(Density,2.));
296 if ( Phase == kStateLiquid ) {
297 ResolutionScale *= 1.5;
303 DokeBirks[0]= 19.171*
pow(ElectricField+25.552,-0.83057)+0.026772;
319 tau1 = GaussGen.fire(3.1*CLHEP::ns,.7*CLHEP::ns);
320 tau3 = GaussGen.fire(24.*CLHEP::ns,1.*CLHEP::ns);
322 else if ( Phase == kStateGas ) {
325 ScintillationYield = 1 / (12.98*
CLHEP::eV); }
327 G4double Townsend = (ElectricField/nDensity)*1e17;
328 DokeBirks[0] = 0.0000;
329 DokeBirks[2] = 0.1933*
pow(Density,2.6199)+0.29754 -
330 (0.045439*
pow(Density,2.4689)+0.066034)*log10(ElectricField);
331 if ( ElectricField>6990 ) DokeBirks[2]=0.0;
332 if ( ElectricField<1000 ) DokeBirks[2]=0.2;
333 if ( ElectricField<100. ) { DokeBirks[0]=0.18; DokeBirks[2]=0.58; }
334 if( Density < 0.061 ) ThomasImel = 0.041973*
pow(Density,1.8105);
335 else if( Density >= 0.061 && Density <= 0.167 )
336 ThomasImel=5.9583e-5+0.0048523*Density-0.023109*
pow(Density,2.);
337 else ThomasImel = 6.2552e-6*
pow(Density,-1.9963);
338 if(ElectricField)ThomasImel=1.2733e-5*
pow(Townsend/Density,-0.68426);
341 tau1 = GaussGen.fire(5.18*CLHEP::ns,1.55*CLHEP::ns);
342 tau3 = GaussGen.fire(100.1*CLHEP::ns,7.9*CLHEP::ns);
350 G4double anExcitationEnergy = ((
const G4Ions*)(pDef))->
351 GetExcitationEnergy();
352 G4double TotalEnergyDeposit =
353 aMaterialPropertiesTable->GetConstProperty(
"ENERGY_DEPOSIT_TOT" );
354 G4bool
convert =
false, annihil =
false;
356 if(pPreStepPoint->GetKineticEnergy()>=(2*CLHEP::electron_mass_c2) &&
357 !pPostStepPoint->GetKineticEnergy() &&
358 !aStep.GetTotalEnergyDeposit() && aParticle->GetPDGcode()==22) {
359 convert =
true; TotalEnergyDeposit = CLHEP::electron_mass_c2;
361 if(pPreStepPoint->GetKineticEnergy() &&
362 !pPostStepPoint->GetKineticEnergy() &&
363 aParticle->GetPDGcode()==-11) {
364 annihil =
true; TotalEnergyDeposit += aStep.GetTotalEnergyDeposit();
366 G4bool either =
false;
367 if(inside || outside || convert || annihil || InsAndOuts) either=
true;
370 !either && !fExcitedNucleus )
373 if ( !annihil ) TotalEnergyDeposit += aStep.GetTotalEnergyDeposit();
374 if ( !convert ) aMaterialPropertiesTable->
375 AddConstProperty(
"ENERGY_DEPOSIT_TOT", TotalEnergyDeposit );
377 TotalEnergyDeposit = aStep.GetTotalEnergyDeposit();
382 G4double InitialKinetEnergy = aMaterialPropertiesTable->
383 GetConstProperty(
"ENERGY_DEPOSIT_GOL" );
385 if ( InitialKinetEnergy == 0 ) {
386 G4double tE = pPreStepPoint->GetKineticEnergy()+anExcitationEnergy;
388 Phase == kStateLiquid && z1 == 54 ) tE = 9.4*
CLHEP::keV;
389 if ( fKr83m && ElectricField != 0 )
391 aMaterialPropertiesTable->
392 AddConstProperty (
"ENERGY_DEPOSIT_GOL", tE );
396 if ( anExcitationEnergy ) fExcitedNucleus =
true;
400 if(outside){ aMaterialPropertiesTable->
401 AddConstProperty(
"ENERGY_DEPOSIT_GOL",
402 InitialKinetEnergy-pPostStepPoint->GetKineticEnergy());
403 if(aMaterialPropertiesTable->
404 GetConstProperty(
"ENERGY_DEPOSIT_GOL")<0)
405 aMaterialPropertiesTable->AddConstProperty(
"ENERGY_DEPOSIT_GOL",0);
409 if(inside) { aMaterialPropertiesTable->
410 AddConstProperty(
"ENERGY_DEPOSIT_GOL",
411 InitialKinetEnergy+pPreStepPoint->GetKineticEnergy());
412 if ( TotalEnergyDeposit > 0 && InitialKinetEnergy == 0 ) {
413 aMaterialPropertiesTable->AddConstProperty(
"ENERGY_DEPOSIT_GOL",0);
414 TotalEnergyDeposit = .000000;
420 aMaterialPropertiesTable->
421 AddConstProperty(
"ENERGY_DEPOSIT_GOL",(-0.1*
CLHEP::keV)+
422 InitialKinetEnergy-pPostStepPoint->GetKineticEnergy());
423 InitialKinetEnergy = bMaterial->GetMaterialPropertiesTable()->
424 GetConstProperty(
"ENERGY_DEPOSIT_GOL");
425 bMaterial->GetMaterialPropertiesTable()->
426 AddConstProperty(
"ENERGY_DEPOSIT_GOL",(-0.1*
CLHEP::keV)+
427 InitialKinetEnergy+pPreStepPoint->GetKineticEnergy());
428 if(aMaterialPropertiesTable->
429 GetConstProperty(
"ENERGY_DEPOSIT_GOL")<0)
430 aMaterialPropertiesTable->AddConstProperty(
"ENERGY_DEPOSIT_GOL",0);
431 if ( bMaterial->GetMaterialPropertiesTable()->
432 GetConstProperty(
"ENERGY_DEPOSIT_GOL") < 0 )
433 bMaterial->GetMaterialPropertiesTable()->
434 AddConstProperty (
"ENERGY_DEPOSIT_GOL", 0 );
436 InitialKinetEnergy = aMaterialPropertiesTable->
437 GetConstProperty(
"ENERGY_DEPOSIT_GOL");
439 InitialKinetEnergy += 2*CLHEP::electron_mass_c2;
443 InitialKinetEnergy -= 2*CLHEP::electron_mass_c2;
445 aMaterialPropertiesTable->
446 AddConstProperty(
"ENERGY_DEPOSIT_GOL",InitialKinetEnergy);
447 if (anExcitationEnergy < 1
e-100 && aStep.GetTotalEnergyDeposit()==0 &&
448 aMaterialPropertiesTable->GetConstProperty(
"ENERGY_DEPOSIT_GOL")==0 &&
449 aMaterialPropertiesTable->GetConstProperty(
"ENERGY_DEPOSIT_TOT")==0)
453 if ( aTrack.GetCreatorProcess() )
454 procName = aTrack.GetCreatorProcess()->GetProcessName();
458 fMultipleScattering =
true;
465 fMultipleScattering =
true;
469 char xCoord[80];
char yCoord[80];
char zCoord[80];
473 sprintf(xCoord,
"POS_X_%d",i); sprintf(yCoord,
"POS_Y_%d",i);
474 sprintf(zCoord,
"POS_Z_%d",i);
475 pos[0] = aMaterialPropertiesTable->GetConstProperty(xCoord);
476 pos[1] = aMaterialPropertiesTable->GetConstProperty(yCoord);
477 pos[2] = aMaterialPropertiesTable->GetConstProperty(zCoord);
478 if ( sqrt(
pow(x1[0]-pos[0],2.)+
pow(x1[1]-pos[1],2.)+
479 pow(x1[2]-pos[2],2.)) < delta ) {
480 exists =
true;
break;
483 if(!exists && TotalEnergyDeposit) {
485 sprintf(xCoord,
"POS_X_%i",j); sprintf(yCoord,
"POS_Y_%i",j);
486 sprintf(zCoord,
"POS_Z_%i",j);
488 aMaterialPropertiesTable->AddConstProperty( xCoord, x1[0] );
489 aMaterialPropertiesTable->AddConstProperty( yCoord, x1[1] );
490 aMaterialPropertiesTable->AddConstProperty( zCoord, x1[2] );
492 aMaterialPropertiesTable->
493 AddConstProperty(
"TOTALNUM_INT_SITES", j );
501 G4double
a1 = ElementA->GetA();
502 z2 = pDef->GetAtomicNumber();
503 G4double
a2 = (G4double)(pDef->GetAtomicMass());
504 if ( particleName ==
"alpha" || (z2 == 2 && a2 == 4) )
506 if ( fAlpha ||
abs(aParticle->GetPDGcode()) == 2112 )
508 G4double epsilon = 11.5*(TotalEnergyDeposit/
CLHEP::keV)*
pow(z1,(-7./3.));
509 G4double
gamma = 3.*
pow(epsilon,0.15)+0.7*
pow(epsilon,0.6)+epsilon;
510 G4double kappa = 0.133*
pow(z1,(2./3.))*
pow(a2,(-1./2.))*(2./3.);
512 if ( (z1 == z2 && pDef->GetParticleType() ==
"nucleus") ||
513 particleName ==
"neutron" || particleName ==
"antineutron" ) {
515 if ( z1 == 18 && Phase == kStateLiquid )
520 if ( ElectricField == 0 && Phase == kStateLiquid ) {
521 if ( z1 == 54 ) ThomasImel = 0.19;
522 if ( z1 == 18 ) ThomasImel = 0.25;
525 0.3065*exp(-0.008806*
pow(ElectricField,0.76313));
530 G4double MeanNumberOfQuanta =
531 ScintillationYield*TotalEnergyDeposit;
534 G4double sigma = sqrt(ResolutionScale*MeanNumberOfQuanta);
536 G4int(floor(GaussGen.fire(MeanNumberOfQuanta,sigma)+0.5));
538 if (LeffVar > 1) LeffVar = 1.00000;
539 else if (LeffVar < 0) LeffVar = 0;
543 if(TotalEnergyDeposit < 1/ScintillationYield || NumQuanta < 0)
549 G4int NumIons = NumQuanta - NumExcitons;
555 G4double dE, dx=0, LET=0, recombProb;
557 if ( particleName !=
"e-" && particleName !=
"e+" && z1 != z2 &&
558 particleName !=
"mu-" && particleName !=
"mu+" ) {
564 if(LET) dx = dE/(Density*LET);
565 if(
abs(aParticle->GetPDGcode())==2112) dx=0;
569 if(dx) LET = (dE/dx)*(1/Density);
570 if ( LET > 0 && dE > 0 && dx > 0 ) {
573 particleName ==
"e-" ) {
576 DokeBirks[1] = DokeBirks[0]/(1-DokeBirks[2]);
578 recombProb = (DokeBirks[0]*LET)/(1+DokeBirks[1]*LET)+DokeBirks[2];
579 if ( Phase == kStateLiquid ) {
580 if ( z1 == 54 ) recombProb *= (Density/
Density_LXe);
581 if ( z1 == 18 ) recombProb *= (Density/
Density_LAr);
584 if(recombProb<0) recombProb=0;
585 if(recombProb>1) recombProb=1;
589 G4int NumPhotons = NumExcitons +
BinomFluct(NumIons,recombProb);
590 G4int NumElectrons = NumQuanta - NumPhotons;
601 char numExc[80];
char numIon[80];
char numPho[80];
char numEle[80];
602 sprintf(numExc,
"N_EXC_%i",counter); sprintf(numIon,
"N_ION_%i",counter);
603 aMaterialPropertiesTable->AddConstProperty( numExc, NumExcitons );
604 aMaterialPropertiesTable->AddConstProperty( numIon, NumIons );
605 sprintf(numPho,
"N_PHO_%i",counter); sprintf(numEle,
"N_ELE_%i",counter);
606 aMaterialPropertiesTable->AddConstProperty( numPho, NumPhotons );
607 aMaterialPropertiesTable->AddConstProperty( numEle, NumElectrons );
611 char trackL[80];
char time00[80];
char time01[80];
char energy[80];
612 sprintf(trackL,
"TRACK_%i",counter); sprintf(energy,
"ENRGY_%i",counter);
613 sprintf(time00,
"TIME0_%i",counter); sprintf(time01,
"TIME1_%i",counter);
614 delta = aMaterialPropertiesTable->GetConstProperty( trackL );
615 G4double energ = aMaterialPropertiesTable->GetConstProperty( energy );
617 aMaterialPropertiesTable->AddConstProperty( trackL, delta );
618 aMaterialPropertiesTable->AddConstProperty( energy, energ );
619 if ( TotalEnergyDeposit > 0 ) {
620 G4double deltaTime = aMaterialPropertiesTable->
621 GetConstProperty( time00 );
624 if (aParticle->GetCharge() != 0) {
626 aMaterialPropertiesTable->AddConstProperty( time00, t0 );
630 aMaterialPropertiesTable->AddConstProperty( time00, t1 );
632 deltaTime = aMaterialPropertiesTable->GetConstProperty( time01 );
635 aMaterialPropertiesTable->AddConstProperty( time01, t1 );
639 TotalEnergyDeposit=aMaterialPropertiesTable->
640 GetConstProperty(
"ENERGY_DEPOSIT_TOT");
641 InitialKinetEnergy=aMaterialPropertiesTable->
642 GetConstProperty(
"ENERGY_DEPOSIT_GOL");
643 if(InitialKinetEnergy >
HIENLIM &&
644 abs(aParticle->GetPDGcode()) != 2112) fVeryHighEnergy=
true;
646 if (fVeryHighEnergy && !fExcitedNucleus) safety = 0.2*
CLHEP::keV;
650 if( !anExcitationEnergy && pDef->GetParticleType() ==
"nucleus" &&
651 aTrack.GetTrackStatus() != fAlive && !fAlpha )
652 InitialKinetEnergy = TotalEnergyDeposit;
653 if ( particleName ==
"neutron" || particleName ==
"antineutron" )
654 InitialKinetEnergy = TotalEnergyDeposit;
659 if(
std::abs(TotalEnergyDeposit-InitialKinetEnergy)<safety ||
660 TotalEnergyDeposit>=InitialKinetEnergy ){
664 NumPhotons = 0; NumElectrons = 0;
666 sprintf(numPho,
"N_PHO_%d",i); sprintf(numEle,
"N_ELE_%d",i);
667 sprintf(trackL,
"TRACK_%d",i); sprintf(energy,
"ENRGY_%d",i);
669 dx += aMaterialPropertiesTable->GetConstProperty(trackL);
670 dE += aMaterialPropertiesTable->GetConstProperty(energy);
673 G4int buffer = 100;
if ( fVeryHighEnergy ) buffer = 1;
674 fParticleChange.SetNumberOfSecondaries(buffer*(NumPhotons+NumElectrons));
676 if (fTrackSecondariesFirst) {
677 if (aTrack.GetTrackStatus() == fAlive )
686 sprintf(xCoord,
"POS_X_%d",i); sprintf(yCoord,
"POS_Y_%d",i);
687 sprintf(zCoord,
"POS_Z_%d",i);
688 sprintf(numExc,
"N_EXC_%d",i); sprintf(numIon,
"N_ION_%d",i);
689 sprintf(numPho,
"N_PHO_%d",i); sprintf(numEle,
"N_ELE_%d",i);
690 NumExcitons = (G4int)aMaterialPropertiesTable->
691 GetConstProperty( numExc );
692 NumIons = (G4int)aMaterialPropertiesTable->
693 GetConstProperty( numIon );
694 sprintf(trackL,
"TRACK_%d",i); sprintf(energy,
"ENRGY_%d",i);
695 sprintf(time00,
"TIME0_%d",i); sprintf(time01,
"TIME1_%d",i);
696 delta = aMaterialPropertiesTable->GetConstProperty( trackL );
697 energ = aMaterialPropertiesTable->GetConstProperty( energy );
698 t0 = aMaterialPropertiesTable->GetConstProperty( time00 );
699 t1 = aMaterialPropertiesTable->GetConstProperty( time01 );
705 if ( (delta < R0 && !fVeryHighEnergy) || z2 == z1 || fAlpha ) {
706 if( z1 == 54 && ElectricField &&
707 Phase == kStateLiquid ) {
708 if (
abs ( z1 - z2 ) &&
709 abs ( aParticle->GetPDGcode() ) != 2112 ) {
710 ThomasImel = 0.056776*
pow(ElectricField,-0.11844);
712 ThomasImel=0.057675*
pow(ElectricField,-0.49362);
718 -0.15169*
pow((ElectricField+215.25),0.01811)+0.20952;
721 if (ThomasImel > 0.19) ThomasImel = 0.19;
722 if (ThomasImel < 0.00) ThomasImel = 0.00;
724 if ( Phase == kStateLiquid ) {
725 if ( z1 == 54 ) ThomasImel *=
pow((Density/2.84),0.3);
733 xi = (G4double(NumIons)/4.)*ThomasImel;
736 (0.17163+162.32/(ElectricField+191.39));
737 if ( NumIonsEff > 1e6 ) NumIonsEff = 1e6;
738 xi = (G4double(NumIonsEff)/4.)*ThomasImel;
740 if ( fKr83m && ElectricField==0 )
741 xi = (G4double(1.3*NumIons)/4.)*ThomasImel;
742 recombProb = 1-log(1+xi)/xi;
743 if(recombProb<0) recombProb=0;
744 if(recombProb>1) recombProb=1;
747 NumPhotons = NumExcitons +
BinomFluct(NumIons,recombProb);
748 NumElectrons = (NumExcitons + NumIons) - NumPhotons;
750 aMaterialPropertiesTable->
751 AddConstProperty( numPho, NumPhotons );
752 aMaterialPropertiesTable->
753 AddConstProperty( numEle, NumElectrons );
758 NumPhotons = (G4int)aMaterialPropertiesTable->
759 GetConstProperty( numPho );
760 NumElectrons =(G4int)aMaterialPropertiesTable->
761 GetConstProperty( numEle );
763 G4double FanoFactor =0;
766 2575.9*
pow((ElectricField+15.154),-0.64064)-1.4707;
767 if ( fKr83m ) TotalEnergyDeposit = 4*
CLHEP::keV;
768 if ( (dE/
CLHEP::keV) <= 100 && ElectricField >= 0 ) {
769 G4double keVee = (TotalEnergyDeposit/(100.*
CLHEP::keV));
771 FanoFactor *= -0.00075+0.4625*keVee+34.375*
pow(keVee,2.);
773 FanoFactor *= 0.069554+1.7322*keVee-.80215*
pow(keVee,2.);
776 if ( Phase == kStateGas && Density>0.5 ) FanoFactor =
777 0.42857-4.7857*Density+7.8571*
pow(Density,2.);
778 if( FanoFactor <= 0 || fVeryHighEnergy ) FanoFactor = 0;
779 NumQuanta = NumPhotons + NumElectrons;
780 if(z1==54 && FanoFactor) NumElectrons = G4int(
781 floor(GaussGen.fire(NumElectrons,
782 sqrt(FanoFactor*NumElectrons))+0.5));
783 NumPhotons = NumQuanta - NumElectrons;
784 if ( NumElectrons <= 0 ) NumElectrons = 0;
785 if ( NumPhotons <= 0 ) NumPhotons = 0;
790 } NumElectrons = G4int(floor(NumElectrons*
phe_per_e+0.5));
797 if(fKr83m > 41) fKr83m = 0;
803 aMaterialPropertiesTable->AddConstProperty( numExc, 0 );
804 aMaterialPropertiesTable->AddConstProperty( numIon, 0 );
805 aMaterialPropertiesTable->AddConstProperty( numPho, 0 );
806 aMaterialPropertiesTable->AddConstProperty( numEle, 0 );
809 if( InitialKinetEnergy < MAX_ENE && InitialKinetEnergy >
MIN_ENE &&
810 !fMultipleScattering )
811 NumQuanta = NumPhotons + NumElectrons;
813 for(k = 0; k < NumQuanta; k++) {
814 G4double sampledEnergy;
815 G4DynamicParticle* aQuantum;
818 G4double cost = 1. - 2.*UniformGen.fire();
819 G4double sint = std::sqrt((1.-cost)*(1.+cost));
821 G4double sinp = std::sin(phi); G4double cosp = std::cos(phi);
822 G4double
px = sint*cosp; G4double
py = sint*sinp;
826 G4ParticleMomentum photonMomentum(px, py, pz);
829 if (k < NumPhotons) {
831 G4double sx = cost*cosp;
832 G4double sy = cost*sinp;
834 G4ThreeVector photonPolarization(sx, sy, sz);
835 G4ThreeVector perp = photonMomentum.cross(photonPolarization);
837 sinp = std::sin(phi);
838 cosp = std::cos(phi);
839 photonPolarization = cosp * photonPolarization + sinp * perp;
840 photonPolarization = photonPolarization.unit();
843 sampledEnergy = GaussGen.fire(PhotMean,PhotWidth);
844 aQuantum =
new G4DynamicParticle(G4OpticalPhoton::OpticalPhoton(),
846 aQuantum->SetPolarization(photonPolarization.x(),
847 photonPolarization.y(),
848 photonPolarization.z());
854 G4ParticleMomentum electronMomentum(0, 0, -FieldSign);
858 if ( Phase == kStateGas ) {
875 aQuantum->SetKineticEnergy(sampledEnergy);
884 G4double aSecondaryTime = t0+UniformGen.fire()*(t1-
t0)+evtStrt;
888 if ( aQuantum->GetDefinition()->
889 GetParticleName()==
"opticalphoton" ) {
890 if (
abs(z2-z1) && !fAlpha &&
891 abs(aParticle->GetPDGcode()) != 2112 ) {
898 if ( Phase == kStateLiquid && z1 == 54 )
899 tauR = 3.5*((1+0.41*LET)/(0.18*LET))*
CLHEP::ns 900 *exp(-0.00900*ElectricField);
907 SingTripRatioX = GaussGen.fire(0.17,0.05);
908 SingTripRatioR = GaussGen.fire(0.8,0.2);
910 SingTripRatioR = 0.2701+0.003379*LET-4.7338e-5*
pow(LET,2.)
911 +8.1449e-6*
pow(LET,3.); SingTripRatioX = SingTripRatioR;
913 SingTripRatioX = GaussGen.fire(0.36,0.06);
914 SingTripRatioR = GaussGen.fire(0.5,0.2); }
918 SingTripRatioR = GaussGen.fire(2.3,0.51);
921 if (z1==18) SingTripRatioR = (-0.065492+1.9996
922 *exp(-dE/CLHEP::MeV))/(1+0.082154/
pow(dE/CLHEP::MeV,2.)) + 2.1811;
923 SingTripRatioX = SingTripRatioR;
928 SingTripRatioR = GaussGen.fire(7.8,1.5);
929 if (z1==18) SingTripRatioR = 0.22218*
pow(energ/
CLHEP::keV,0.48211);
930 SingTripRatioX = SingTripRatioR;
935 if ( k > NumExcitons ) {
938 aSecondaryTime += tauR*(1./UniformGen.fire()-1);
939 if(UniformGen.fire()<SingTripRatioR/(1+SingTripRatioR))
940 aSecondaryTime -= tau1*log(UniformGen.fire());
941 else aSecondaryTime -= tau3*log(UniformGen.fire());
944 if(UniformGen.fire()<SingTripRatioX/(1+SingTripRatioX))
945 aSecondaryTime -= tau1*log(UniformGen.fire());
946 else aSecondaryTime -= tau3*log(UniformGen.fire());
950 G4double gainField = 12;
951 G4double tauTrap = 884.83-62.069*gainField;
952 if ( Phase == kStateLiquid )
953 aSecondaryTime -= tauTrap*
CLHEP::ns*log(UniformGen.fire());
965 x0[0] = aMaterialPropertiesTable->GetConstProperty( xCoord );
966 x0[1] = aMaterialPropertiesTable->GetConstProperty( yCoord );
967 x0[2] = aMaterialPropertiesTable->GetConstProperty( zCoord );
968 G4double radius = sqrt(
pow(x0[0],2.)+
pow(x0[1],2.));
971 if ( radius >=
R_TOL ) {
974 radius -=
R_TOL; phi = atan ( x0[1] / x0[0] );
975 x0[0] = fabs(radius*cos(phi))*((fabs(x0[0]))/(x0[0]));
976 x0[1] = fabs(radius*sin(phi))*((fabs(x0[1]))/(x0[1]));
979 G4ThreeVector aSecondaryPosition = x0;
980 if ( k >= NumPhotons && diffusion && ElectricField > 0 ) {
981 G4double D_T = 64*
pow(1
e-3*ElectricField,-.17);
983 G4double D_L = 13.859*
pow(1
e-3*ElectricField,-0.58559);
985 if ( Phase == kStateLiquid && z1 == 18 ) {
986 D_T = 93.342*
pow(ElectricField/nDensity,0.041322);
988 if ( Phase == kStateGas && z1 == 54 ) {
989 D_L=4.265+19097/ElectricField-1.7397e6/
pow(ElectricField,2.)+
990 1.2477e8/
pow(ElectricField,3.); D_T *= 0.01;
993 G4double vDrift = sqrt((2*sampledEnergy)/(
EMASS));
994 if (
BORDER == 0 ) x0[2] = 0;
995 G4double sigmaDT = sqrt(2*D_T*fabs(
BORDER-x0[2])/vDrift);
996 G4double sigmaDL = sqrt(2*D_L*fabs(
BORDER-x0[2])/vDrift);
997 G4double dr =
std::abs(GaussGen.fire(0.,sigmaDT));
999 aSecondaryPosition[0] += cos(phi) * dr;
1000 aSecondaryPosition[1] += sin(phi) * dr;
1001 aSecondaryPosition[2] += GaussGen.fire(0.,sigmaDL);
1002 radius = std::sqrt(
std::pow(aSecondaryPosition[0],2.)+
1003 std::pow(aSecondaryPosition[1],2.));
1004 if(aSecondaryPosition[2] >=
BORDER && Phase == kStateLiquid) {
1006 if(aSecondaryPosition[2] <=
PMT && !GlobalFields)
1007 aSecondaryPosition[2] =
PMT +
R_TOL;
1011 if ( aSecondaryTime < 0 ) aSecondaryTime = 0;
1022 aMaterialPropertiesTable->AddConstProperty( xCoord, 999*
CLHEP::km );
1023 aMaterialPropertiesTable->AddConstProperty( yCoord, 999*
CLHEP::km );
1024 aMaterialPropertiesTable->AddConstProperty( zCoord, 999*
CLHEP::km );
1025 aMaterialPropertiesTable->AddConstProperty( trackL, 0*
CLHEP::um );
1026 aMaterialPropertiesTable->AddConstProperty( energy, 0*
CLHEP::eV );
1027 aMaterialPropertiesTable->AddConstProperty( time00, DBL_MAX );
1028 aMaterialPropertiesTable->AddConstProperty( time01, -1*
CLHEP::ns );
1033 aMaterialPropertiesTable->
1034 AddConstProperty(
"TOTALNUM_INT_SITES", 0 );
1035 aMaterialPropertiesTable->
1036 AddConstProperty(
"ENERGY_DEPOSIT_TOT", 0*
CLHEP::keV );
1037 aMaterialPropertiesTable->
1038 AddConstProperty(
"ENERGY_DEPOSIT_GOL", 0*CLHEP::MeV );
1039 fExcitedNucleus =
false;
1056 std::cout <<
"WARNING: NestAlg::GetGasElectronDriftSpeed(G4double, G4double) " 1057 <<
"is not defined, returning bogus value of -999." <<
std::endl;
1065 G4double efieldinput,
1068 if(efieldinput<0) efieldinput *= (-1);
1070 G4double onea=144623.235704015,
1071 oneb=850.812714257629,
1072 onec=1192.87056676815,
1073 oned=-395969.575204061,
1074 onef=-355.484170008875,
1075 oneg=-227.266219627672,
1076 oneh=223831.601257495,
1077 onei=6.1778950907965,
1078 onej=18.7831533426398,
1079 onek=-76132.6018884368;
1081 G4double twoa=17486639.7118995,
1082 twob=-113.174284723134,
1083 twoc=28.005913193763,
1084 twod=167994210.094027,
1085 twof=-6766.42962575088,
1086 twog=901.474643115395,
1087 twoh=-185240292.471665,
1088 twoi=-633.297790813084,
1089 twoj=87.1756135457949;
1091 G4double thra=10626463726.9833,
1092 thrb=224025158.134792,
1093 thrc=123254826.300172,
1094 thrd=-4563.5678061122,
1095 thrf=-1715.269592063,
1096 thrg=-694181.921834368,
1097 thrh=-50.9753281079838,
1098 thri=58.3785811395493,
1099 thrj=201512.080026704;
1100 G4double y1=0,y2=0,
f1=0,
f2=0,
f3=0,edrift=0,
1101 t1=0,t2=0,slope=0,intercept=0;
1104 f1=onea/(1+exp(-(efieldinput-oneb)/onec))+oned/
1105 (1+exp(-(efieldinput-onef)/oneg))+
1106 oneh/(1+exp(-(efieldinput-onei)/onej))+onek;
1107 f2=twoa/(1+exp(-(efieldinput-twob)/twoc))+twod/
1108 (1+exp(-(efieldinput-twof)/twog))+
1109 twoh/(1+exp(-(efieldinput-twoi)/twoj));
1110 f3=thra*exp(-thrb*efieldinput)+thrc*exp(-(
pow(efieldinput-thrd,2))/
1112 thrg*exp(-(
pow(efieldinput-thrh,2)/(thri*thri)))+thrj;
1114 if(efieldinput<20 && efieldinput>=0) {
1115 f1=2951*efieldinput;
1116 f2=5312*efieldinput;
1117 f3=7101*efieldinput;
1120 if(tempinput<200.0 && tempinput>165.0) {
1126 if(tempinput<230.0 && tempinput>200.0) {
1132 if((tempinput>230.0 || tempinput<165.0) && !Miller) {
1133 G4cout <<
"\nWARNING: TEMPERATURE OUT OF RANGE (165-230 K)\n";
1136 if (tempinput == 165.0) edrift =
f1;
1137 else if (tempinput == 200.0) edrift =
f2;
1138 else if (tempinput == 230.0) edrift =
f3;
1141 slope = (y1-y2)/(
t1-t2);
1142 intercept=y1-slope*
t1;
1143 edrift=slope*tempinput+intercept;
1147 if ( efieldinput <= 40. )
1148 edrift = -0.13274+0.041082*efieldinput-0.0006886*
pow(efieldinput,2.)+
1149 5.5503e-6*
pow(efieldinput,3.);
1151 edrift = 0.060774*efieldinput/
pow(1+0.11336*
pow(efieldinput,0.5218),2.);
1152 if ( efieldinput >= 1e5 ) edrift = 2.7;
1153 if ( efieldinput >= 100 )
1154 edrift -= 0.017 * ( tempinput - 163 );
1156 edrift += 0.017 * ( tempinput - 163 );
1159 if ( Z == 18 ) edrift = 1e5 * (.097384*
pow(log10(efieldinput),3.0622)-.018614*sqrt(efieldinput) );
1160 if ( edrift < 0 ) edrift = 0.;
1171 if ( E >= 1 ) LET = 58.482-61.183*log10(E)+19.749*
pow(log10(E),2)+
1172 2.3101*
pow(log10(E),3)-3.3469*
pow(log10(E),4)+
1173 0.96788*
pow(log10(E),5)-0.12619*
pow(log10(E),6)+0.0065108*
pow(log10(E),7);
1177 else if ( E>0 && E<1 ) LET = 6.9463+815.98*E-4828*
pow(E,2)+17079*
pow(E,3)-
1178 36394*
pow(E,4)+44553*
pow(E,5)-28659*
pow(E,6)+7483.8*
pow(E,7);
1183 if ( E >= 1 ) LET = 116.70-162.97*log10(E)+99.361*
pow(log10(E),2)-
1184 33.405*
pow(log10(E),3)+6.5069*
pow(log10(E),4)-
1185 0.69334*
pow(log10(E),5)+.031563*
pow(log10(E),6);
1186 else if ( E>0 && E<1 ) LET = 100;
1195 CLHEP::RandGauss GaussGen(
fEngine);
1196 CLHEP::RandFlat UniformGen(
fEngine);
1198 G4double
mean = N0*prob;
1199 G4double sigma = sqrt(N0*prob*(1-prob));
1201 if ( prob == 0.00 )
return N1;
1202 if ( prob == 1.00 )
return N0;
1205 for(G4int i = 0; i < N0; i++) {
1206 if(UniformGen.fire() < prob) N1++;
1210 N1 = G4int(floor(GaussGen.fire(mean,sigma)+0.5));
1212 if ( N1 > N0 ) N1 = N0;
1213 if ( N1 < 0 ) N1 = 0;
1220 char xCoord[80];
char yCoord[80];
char zCoord[80];
1221 char numExc[80];
char numIon[80];
char numPho[80];
char numEle[80];
1222 char trackL[80];
char time00[80];
char time01[80];
char energy[80];
1225 for( G4int i=0; i<10000; i++ ) {
1226 sprintf(xCoord,
"POS_X_%d",i); sprintf(yCoord,
"POS_Y_%d",i);
1227 sprintf(zCoord,
"POS_Z_%d",i);
1228 nobleElementMat->AddConstProperty( xCoord, 999*
CLHEP::km );
1229 nobleElementMat->AddConstProperty( yCoord, 999*
CLHEP::km );
1230 nobleElementMat->AddConstProperty( zCoord, 999*
CLHEP::km );
1231 sprintf(numExc,
"N_EXC_%d",i); sprintf(numIon,
"N_ION_%d",i);
1232 sprintf(numPho,
"N_PHO_%d",i); sprintf(numEle,
"N_ELE_%d",i);
1233 nobleElementMat->AddConstProperty( numExc, 0 );
1234 nobleElementMat->AddConstProperty( numIon, 0 );
1235 nobleElementMat->AddConstProperty( numPho, 0 );
1236 nobleElementMat->AddConstProperty( numEle, 0 );
1237 sprintf(trackL,
"TRACK_%d",i); sprintf(energy,
"ENRGY_%d",i);
1238 sprintf(time00,
"TIME0_%d",i); sprintf(time01,
"TIME1_%d",i);
1239 nobleElementMat->AddConstProperty( trackL, 0*
CLHEP::um );
1240 nobleElementMat->AddConstProperty( energy, 0*
CLHEP::eV );
1241 nobleElementMat->AddConstProperty( time00, DBL_MAX );
1242 nobleElementMat->AddConstProperty( time01,-1*
CLHEP::ns );
1248 nobleElementMat->AddConstProperty(
"TOTALNUM_INT_SITES", 0 );
1249 nobleElementMat->AddConstProperty(
"ENERGY_DEPOSIT_TOT", 0*
CLHEP::keV );
1250 nobleElementMat->AddConstProperty(
"ENERGY_DEPOSIT_GOL", 0*
CLHEP::MeV );
1259 G4double a_0 = 5.29e-11*
CLHEP::m; G4double
a = 0.626*a_0*
pow(Z,(-1./3.));
1262 G4double zeta_0 =
pow(Z,(1./6.)); G4double m_N = A*1.66e-27*
CLHEP::kg;
1267 G4double s_n = log(1+1.1383*epsilon)/(2.*(epsilon +
1268 0.01321*
pow(epsilon,0.21226) +
1269 0.19593*sqrt(epsilon)));
1270 G4double s_e = (a_0*zeta_0/
a)*hbar*sqrt(8*epsilon*2.*
CLHEP::twopi*epsilon_0/
1272 return 1.38e5*0.5*(1+tanh(50*epsilon-0.25))*epsilon*(s_e/s_n);
static constexpr double cm
code to link reconstructed objects back to the MC truth information
static constexpr double keV
G4VParticleChange fParticleChange
pointer to G4VParticleChange
static constexpr double g
double fYieldFactor
turns scint. on/off
static constexpr double cm3
static constexpr double kg
int fNumIonElectrons
number of ionization electrons produced by step
static constexpr double MeV
static constexpr double km
CLHEP::HepRandomEngine & fEngine
random engine
kilovolt_as<> kilovolt
Type of potential stored in kilovolt, in double precision.
bool exists(std::string path)
static G4ThermalElectron * ThermalElectron()
static constexpr double eV
static constexpr double cm2
def convert(inputfile, outputfile="wire-cell-garfield-fine-response.json.bz2", average=False, shaped=False)
G4double GetLiquidElectronDriftSpeed(double T, double F, G4bool M, G4int Z)
double gamma(double KE, const simb::MCParticle *part)
std::map< int, bool > fElementPropInit
int fNumScintPhotons
number of photons produced by the step
General GArSoft Utilities.
double fEnergyDep
energy deposited by the step
const G4VParticleChange & CalculateIonizationAndScintillation(G4Track const &aTrack, G4Step const &aStep)
static constexpr double mm
NestAlg(CLHEP::HepRandomEngine &engine)
G4double GetGasElectronDriftSpeed(G4double efieldinput, G4double density)
G4int BinomFluct(G4int N0, G4double prob)
G4double CalculateElectronLET(G4double E, G4int Z)
void InitMatPropValues(G4MaterialPropertiesTable *nobleElementMat, int z)
double mean(sqlite3 *db, std::string const &table_name, std::string const &column_name)
QTextStream & endl(QTextStream &s)
G4double UnivScreenFunc(G4double E, G4double Z, G4double A)
double fExcitationRatio
excitons to ions