Public Member Functions | Private Member Functions | Private Attributes | List of all members
genie::KovalenkoQELCharmPXSec Class Reference

Computes the QEL Charm Production Differential Cross Section using Kovalenko's duality model approach. It models the differential cross sections for:
. More...

#include <KovalenkoQELCharmPXSec.h>

Inheritance diagram for genie::KovalenkoQELCharmPXSec:
genie::XSecAlgorithmI genie::Algorithm

Public Member Functions

 KovalenkoQELCharmPXSec ()
 
 KovalenkoQELCharmPXSec (string config)
 
virtual ~KovalenkoQELCharmPXSec ()
 
double XSec (const Interaction *i, KinePhaseSpace_t k) const
 Compute the cross section for the input interaction. More...
 
double Integral (const Interaction *i) const
 
bool ValidProcess (const Interaction *i) const
 Can this cross section algorithm handle the input process? More...
 
bool ValidKinematics (const Interaction *i) const
 Is the input kinematical point a physically allowed one? More...
 
void Configure (const Registry &config)
 
void Configure (string param_set)
 
- Public Member Functions inherited from genie::XSecAlgorithmI
virtual ~XSecAlgorithmI ()
 
- Public Member Functions inherited from genie::Algorithm
virtual ~Algorithm ()
 
virtual void FindConfig (void)
 
virtual const RegistryGetConfig (void) const
 
RegistryGetOwnedConfig (void)
 
virtual const AlgIdId (void) const
 Get algorithm ID. More...
 
virtual AlgStatus_t GetStatus (void) const
 Get algorithm status. More...
 
virtual bool AllowReconfig (void) const
 
virtual AlgCmp_t Compare (const Algorithm *alg) const
 Compare with input algorithm. More...
 
virtual void SetId (const AlgId &id)
 Set algorithm ID. More...
 
virtual void SetId (string name, string config)
 
const AlgorithmSubAlg (const RgKey &registry_key) const
 
void AdoptConfig (void)
 
void AdoptSubstructure (void)
 
virtual void Print (ostream &stream) const
 Print algorithm info. More...
 

Private Member Functions

void LoadConfig (void)
 
double ZR (const Interaction *interaction) const
 
double DR (const Interaction *interaction) const
 
double MRes (const Interaction *interaction) const
 
double ResDM (const Interaction *interaction) const
 
double xiBar (double Q2, double Mnuc, double v) const
 

Private Attributes

const PDFModelIfPDFModel
 
const XSecIntegratorIfXSecIntegrator
 const IntegratorI * fIntegrator; More...
 
double fMo
 
double fScLambdaP
 
double fScSigmaP
 
double fScSigmaPP
 
double fResDMLambda
 
double fResDMSigma
 

Additional Inherited Members

- Static Public Member Functions inherited from genie::Algorithm
static string BuildParamVectKey (const std::string &comm_name, unsigned int i)
 
static string BuildParamVectSizeKey (const std::string &comm_name)
 
- Protected Member Functions inherited from genie::XSecAlgorithmI
 XSecAlgorithmI ()
 
 XSecAlgorithmI (string name)
 
 XSecAlgorithmI (string name, string config)
 
- Protected Member Functions inherited from genie::Algorithm
 Algorithm ()
 
 Algorithm (string name)
 
 Algorithm (string name, string config)
 
void Initialize (void)
 
void DeleteConfig (void)
 
void DeleteSubstructure (void)
 
RegistryExtractLocalConfig (const Registry &in) const
 
RegistryExtractLowerConfig (const Registry &in, const string &alg_key) const
 Split an incoming configuration Registry into a block valid for the sub-algo identified by alg_key. More...
 
template<class T >
bool GetParam (const RgKey &name, T &p, bool is_top_call=true) const
 
template<class T >
bool GetParamDef (const RgKey &name, T &p, const T &def) const
 
template<class T >
int GetParamVect (const std::string &comm_name, std::vector< T > &v, bool is_top_call=true) const
 Handle to load vectors of parameters. More...
 
int GetParamVectKeys (const std::string &comm_name, std::vector< RgKey > &k, bool is_top_call=true) const
 
int AddTopRegistry (Registry *rp, bool owns=true)
 add registry with top priority, also update ownership More...
 
int AddLowRegistry (Registry *rp, bool owns=true)
 add registry with lowest priority, also update ownership More...
 
int MergeTopRegistry (const Registry &r)
 
int AddTopRegisties (const vector< Registry * > &rs, bool owns=false)
 Add registries with top priority, also udated Ownerships. More...
 
- Protected Attributes inherited from genie::Algorithm
bool fAllowReconfig
 
bool fOwnsSubstruc
 true if it owns its substructure (sub-algs,...) More...
 
AlgId fID
 algorithm name and configuration set More...
 
vector< Registry * > fConfVect
 
vector< boolfOwnerships
 ownership for every registry in fConfVect More...
 
AlgStatus_t fStatus
 algorithm execution status More...
 
AlgMapfOwnedSubAlgMp
 local pool for owned sub-algs (taken out of the factory pool) More...
 

Detailed Description

Computes the QEL Charm Production Differential Cross Section using Kovalenko's duality model approach. It models the differential cross sections for:
.

S.G.Kovalenko, Sov.J.Nucl.Phys.52:934 (1990)

      Rather than using Kovalenko's expression for the ZR scaling factor,
      I apply an ad-hoc scaling factor maintaining the relative strength
      of the QELC channels but lowering their sum to be consistent with
      recent NOMAD measurement. The default value of M0 has been changed
      from 0.1 to sqrt(0.1) as in M.Bischofberger's (ETHZ)PhD thesis
      (DISS.ETH NO 16034). For more details see GENIE-PUB/2007/006.
Author
Costas Andreopoulos <constantinos.andreopoulos cern.ch> University of Liverpool & STFC Rutherford Appleton Laboratory

June 10, 2004

Copyright (c) 2003-2020, The GENIE Collaboration For the full text of the license visit http://copyright.genie-mc.org

Definition at line 48 of file KovalenkoQELCharmPXSec.h.

Constructor & Destructor Documentation

KovalenkoQELCharmPXSec::KovalenkoQELCharmPXSec ( )

Definition at line 36 of file KovalenkoQELCharmPXSec.cxx.

36  :
37 XSecAlgorithmI("genie::KovalenkoQELCharmPXSec")
38 {
39 
40 }
KovalenkoQELCharmPXSec::KovalenkoQELCharmPXSec ( string  config)

Definition at line 42 of file KovalenkoQELCharmPXSec.cxx.

42  :
43 XSecAlgorithmI("genie::KovalenkoQELCharmPXSec", config)
44 {
45 
46 }
static Config * config
Definition: config.cpp:1054
KovalenkoQELCharmPXSec::~KovalenkoQELCharmPXSec ( )
virtual

Definition at line 48 of file KovalenkoQELCharmPXSec.cxx.

49 {
50 
51 }

Member Function Documentation

void KovalenkoQELCharmPXSec::Configure ( const Registry config)
virtual

Configure the algorithm with an external registry The registry is merged with the top level registry if it is owned, Otherwise a copy of it is added with the highest priority

Reimplemented from genie::Algorithm.

Definition at line 289 of file KovalenkoQELCharmPXSec.cxx.

290 {
291  Algorithm::Configure(config);
292  this->LoadConfig();
293 }
virtual void Configure(const Registry &config)
Definition: Algorithm.cxx:62
void KovalenkoQELCharmPXSec::Configure ( string  config)
virtual

Configure the algorithm from the AlgoConfigPool based on param_set string given in input An algorithm contains a vector of registries coming from different xml configuration files, which are loaded according a very precise prioriy This methods will load a number registries in order of priority: 1) "Tunable" parameter set from CommonParametes. This is loaded with the highest prioriry and it is designed to be used for tuning procedure Usage not expected from the user. 2) For every string defined in "CommonParame" the corresponding parameter set will be loaded from CommonParameter.xml 3) parameter set specified by the config string and defined in the xml file of the algorithm 4) if config is not "Default" also the Default parameter set from the same xml file will be loaded Effectively this avoids the repetion of a parameter when it is not changed in the requested configuration

Reimplemented from genie::Algorithm.

Definition at line 295 of file KovalenkoQELCharmPXSec.cxx.

296 {
297  Algorithm::Configure(param_set);
298  this->LoadConfig();
299 }
virtual void Configure(const Registry &config)
Definition: Algorithm.cxx:62
double KovalenkoQELCharmPXSec::DR ( const Interaction interaction) const
private

Definition at line 141 of file KovalenkoQELCharmPXSec.cxx.

142 {
143  const InitialState & init_state = interaction -> InitState();
144 
145  // Compute PDFs
146  PDF pdfs;
147  pdfs.SetModel(fPDFModel); // <-- attach algorithm
148 
149  // Compute integration area = [xi_bar_plus, xi_bar_minus]
150  const Kinematics & kinematics = interaction->Kine();
151 
152  double Q2 = kinematics.Q2();
153  double Mnuc = init_state.Tgt().HitNucMass();
154  double Mnuc2 = TMath::Power(Mnuc,2);
155  double MR = this->MRes(interaction);
156  double DeltaR = this->ResDM(interaction);
157 
158  double vR_minus = ( TMath::Power(MR-DeltaR,2) - Mnuc2 + Q2 ) / (2*Mnuc);
159  double vR_plus = ( TMath::Power(MR+DeltaR,2) - Mnuc2 + Q2 ) / (2*Mnuc);
160 
161  LOG("QELCharmXSec", pDEBUG)
162  << "vR = [plus: " << vR_plus << ", minus: " << vR_minus << "]";
163 
164  double xi_bar_minus = 0.999;
165  double xi_bar_plus = this->xiBar(Q2, Mnuc, vR_plus);
166 
167  LOG("QELCharmXSec", pDEBUG)
168  << "Integration limits = [" << xi_bar_plus << ", " << xi_bar_minus << "]";
169 
170  int pdgc = init_state.Tgt().HitNucPdg();
171 
172  ROOT::Math::IBaseFunctionOneDim * integrand = new
176 
177  double abstol = 1; // We mostly care about relative tolerance
178  double reltol = 1E-4;
179  int nmaxeval = 100000;
180  ROOT::Math::Integrator ig(*integrand,ig_type,abstol,reltol,nmaxeval);
181  double D = ig.Integral(xi_bar_plus, xi_bar_minus);
182 
183  delete integrand;
184 
185  return D;
186 }
ROOT::Math::IntegrationOneDim::Type Integration1DimTypeFromString(string type)
Definition: GSLUtils.cxx:23
double Q2(const Interaction *const i)
Definition: KineUtils.cxx:1064
int Type
Definition: 018_def.c:12
int HitNucPdg(void) const
Definition: Target.cxx:304
double HitNucMass(void) const
Definition: Target.cxx:233
A class to store PDFs.
Definition: PDF.h:37
double MRes(const Interaction *interaction) const
Generated/set kinematical variables for an event.
Definition: Kinematics.h:39
#define D
Debug message.
Definition: tclscanner.cpp:775
#define LOG(stream, priority)
A macro that returns the requested log4cpp::Category appending a string (using the FILE...
Definition: Messenger.h:96
const Kinematics & Kine(void) const
Definition: Interaction.h:71
void SetModel(const PDFModelI *model)
Definition: PDF.cxx:42
double ResDM(const Interaction *interaction) const
Auxiliary scalar function for the internal integration in Kovalenko QEL charm production cross sectio...
double xiBar(double Q2, double Mnuc, double v) const
double Q2(bool selected=false) const
Definition: Kinematics.cxx:125
const Target & Tgt(void) const
Definition: InitialState.h:66
Initial State information.
Definition: InitialState.h:48
#define pDEBUG
Definition: Messenger.h:63
double KovalenkoQELCharmPXSec::Integral ( const Interaction i) const
virtual

Integrate the model over the kinematic phase space available to the input interaction (kinematical cuts can be included)

Implements genie::XSecAlgorithmI.

Definition at line 228 of file KovalenkoQELCharmPXSec.cxx.

229 {
230  double xsec = fXSecIntegrator->Integrate(this,interaction);
231  return xsec;
232 }
const XSecIntegratorI * fXSecIntegrator
const IntegratorI * fIntegrator;
virtual double Integrate(const XSecAlgorithmI *model, const Interaction *interaction) const =0
void KovalenkoQELCharmPXSec::LoadConfig ( void  )
private

fIntegrator = 0;

Definition at line 301 of file KovalenkoQELCharmPXSec.cxx.

302 {
303  fPDFModel = 0;
304  ///fIntegrator = 0;
305 
306  // Get config values or set defaults
307  GetParamDef( "Scale-LambdaP", fScLambdaP, 0.8 * 0.0102 ) ;
308  GetParamDef( "Scale-SigmaP", fScSigmaP , 0.8 * 0.0028 ) ;
309  GetParamDef( "Scale-SigmaPP", fScSigmaPP, 0.8 * 0.0159 ) ;
310  GetParamDef( "Res-DeltaM-Lambda", fResDMLambda, 0.56 ) ; //GeV
311  GetParamDef( "Res-DeltaM-Sigma", fResDMSigma, 0.20 ) ; //GeV
312  GetParamDef( "Mo", fMo, sqrt(0.1) ); //GeV
313 
314  // get PDF model and integrator
315 
316  fPDFModel = dynamic_cast<const PDFModelI *>(this->SubAlg("PDF-Set"));
317  assert(fPDFModel);
318 
319  // load XSec Integrator
321  dynamic_cast<const XSecIntegratorI *> (this->SubAlg("XSec-Integrator"));
322  assert(fXSecIntegrator);
323 
324  // load numerical integrator for integrand in diff x-section calc.
325 // fIntegrator = dynamic_cast<const IntegratorI *>(this->SubAlg("Integrator"));
326 // assert(fIntegrator);
327 }
Cross Section Integrator Interface.
const XSecIntegratorI * fXSecIntegrator
const IntegratorI * fIntegrator;
Pure abstract base class. Defines the PDFModelI interface to be implemented by wrapper classes to exi...
Definition: PDFModelI.h:28
bool GetParamDef(const RgKey &name, T &p, const T &def) const
const Algorithm * SubAlg(const RgKey &registry_key) const
Definition: Algorithm.cxx:345
double KovalenkoQELCharmPXSec::MRes ( const Interaction interaction) const
private

Definition at line 219 of file KovalenkoQELCharmPXSec.cxx.

220 {
221  const XclsTag & xcls = interaction->ExclTag();
222 
223  int pdgc = xcls.CharmHadronPdg();
224  double MR = PDGLibrary::Instance()->Find(pdgc)->Mass();
225  return MR;
226 }
int CharmHadronPdg(void) const
Definition: XclsTag.h:52
Contains minimal information for tagging exclusive processes.
Definition: XclsTag.h:39
static PDGLibrary * Instance(void)
Definition: PDGLibrary.cxx:57
const XclsTag & ExclTag(void) const
Definition: Interaction.h:72
TParticlePDG * Find(int pdgc, bool must_exist=true)
Definition: PDGLibrary.cxx:75
double KovalenkoQELCharmPXSec::ResDM ( const Interaction interaction) const
private

Definition at line 197 of file KovalenkoQELCharmPXSec.cxx.

198 {
199 // Resonance Delta M obeys the constraint DM(R+/-) <= |M(R+/-) - M(R)|
200 // where M(R-) <= M(R) <= M(R+) are the masses of the neighboring
201 // resonances R+, R-.
202 // Get the values from the algorithm conf. registry, and if they do not exist
203 // set them to default values (Eq.(20) in Sov.J.Nucl.Phys.52:934 (1990)
204 
205  const XclsTag & xcls = interaction->ExclTag();
206 
207  int pdgc = xcls.CharmHadronPdg();
208 
209  bool isLambda = (pdgc == kPdgLambdaPc);
210  bool isSigma = (pdgc == kPdgSigmaPc || pdgc == kPdgSigmaPPc);
211 
212  if ( isLambda ) return fResDMLambda;
213  else if ( isSigma ) return fResDMSigma;
214  else abort();
215 
216  return 0;
217 }
int CharmHadronPdg(void) const
Definition: XclsTag.h:52
Contains minimal information for tagging exclusive processes.
Definition: XclsTag.h:39
const int kPdgSigmaPPc
Definition: PDGCodes.h:102
const int kPdgLambdaPc
Definition: PDGCodes.h:99
const int kPdgSigmaPc
Definition: PDGCodes.h:101
const XclsTag & ExclTag(void) const
Definition: Interaction.h:72
bool KovalenkoQELCharmPXSec::ValidKinematics ( const Interaction i) const
virtual

Is the input kinematical point a physically allowed one?

Reimplemented from genie::XSecAlgorithmI.

Definition at line 267 of file KovalenkoQELCharmPXSec.cxx.

269 {
270  if(interaction->TestBit(kISkipKinematicChk)) return true;
271 
272  const InitialState & init_state = interaction->InitState();
273  double E = init_state.ProbeE(kRfHitNucRest);
274 
275  //resonance, final state primary lepton & nucleon mass
276  double MR = this -> MRes (interaction);
277  double ml = interaction->FSPrimLepton()->Mass();
278  double Mnuc = init_state.Tgt().HitNucP4Ptr()->M();
279  double Mnuc2 = TMath::Power(Mnuc,2);
280 
281  //resonance threshold
282  double ER = ( TMath::Power(MR+ml,2) - Mnuc2 ) / (2*Mnuc);
283 
284  if(E <= ER) return false;
285 
286  return true;
287 }
double MRes(const Interaction *interaction) const
const UInt_t kISkipKinematicChk
if set, skip kinematic validity checks
Definition: Interaction.h:48
TLorentzVector * HitNucP4Ptr(void) const
Definition: Target.cxx:247
const Target & Tgt(void) const
Definition: InitialState.h:66
double ProbeE(RefFrame_t rf) const
Initial State information.
Definition: InitialState.h:48
bool KovalenkoQELCharmPXSec::ValidProcess ( const Interaction i) const
virtual

Can this cross section algorithm handle the input process?

Implements genie::XSecAlgorithmI.

Definition at line 234 of file KovalenkoQELCharmPXSec.cxx.

236 {
237  // Make sure we are dealing with one of the following channels:
238  // v + n --> mu- + Lambda_{c}^{+} (2285)
239  // v + n --> mu- + Sigma_{c}^{+} (2455)
240  // v + p --> mu- + Sigma_{c}^{++} (2455)
241 
242  if(interaction->TestBit(kISkipProcessChk)) return true;
243 
244  const XclsTag & xcls = interaction->ExclTag();
245  const InitialState & init_state = interaction->InitState();
246  const ProcessInfo & proc_info = interaction->ProcInfo();
247 
248  bool is_exclusive_charm = (xcls.IsCharmEvent() && !xcls.IsInclusiveCharm());
249  if(!is_exclusive_charm) return false;
250 
251  if(!proc_info.IsQuasiElastic()) return false;
252  if(!proc_info.IsWeak()) return false;
253 
254  bool isP = pdg::IsProton ( init_state.Tgt().HitNucPdg() );
255  bool isN = pdg::IsNeutron( init_state.Tgt().HitNucPdg() );
256 
257  int pdgc = xcls.CharmHadronPdg();
258 
259  bool can_handle = (
260  (pdgc == kPdgLambdaPc && isN) || /* v + n -> l + #Lambda_{c}^{+} */
261  (pdgc == kPdgSigmaPc && isN) || /* v + n -> l + #Sigma_{c}^{+} */
262  (pdgc == kPdgSigmaPPc && isP) /* v + p -> l + #Sigma_{c}^{++} */
263  );
264  return can_handle;
265 }
bool IsWeak(void) const
int HitNucPdg(void) const
Definition: Target.cxx:304
bool IsQuasiElastic(void) const
Definition: ProcessInfo.cxx:69
int CharmHadronPdg(void) const
Definition: XclsTag.h:52
Contains minimal information for tagging exclusive processes.
Definition: XclsTag.h:39
const int kPdgSigmaPPc
Definition: PDGCodes.h:102
bool IsCharmEvent(void) const
Definition: XclsTag.h:50
bool IsNeutron(int pdgc)
Definition: PDGUtils.cxx:338
bool IsProton(int pdgc)
Definition: PDGUtils.cxx:333
A class encapsulating an enumeration of interaction types (EM, Weak-CC, Weak-NC) and scattering types...
Definition: ProcessInfo.h:46
const int kPdgLambdaPc
Definition: PDGCodes.h:99
const int kPdgSigmaPc
Definition: PDGCodes.h:101
bool IsInclusiveCharm(void) const
Definition: XclsTag.cxx:54
const Target & Tgt(void) const
Definition: InitialState.h:66
const UInt_t kISkipProcessChk
if set, skip process validity checks
Definition: Interaction.h:47
Initial State information.
Definition: InitialState.h:48
double KovalenkoQELCharmPXSec::xiBar ( double  Q2,
double  Mnuc,
double  v 
) const
private

Definition at line 188 of file KovalenkoQELCharmPXSec.cxx.

189 {
190  double Mo2 = fMo*fMo;
191  double v2 = v *v;
192  double xi = (Q2/Mnuc) / (v + TMath::Sqrt(v2+Q2));
193  double xib = xi * ( 1 + (1 + Mo2/(Q2+Mo2))*Mo2/Q2 );
194  return xib;
195 }
double Q2(const Interaction *const i)
Definition: KineUtils.cxx:1064
double KovalenkoQELCharmPXSec::XSec ( const Interaction i,
KinePhaseSpace_t  k 
) const
virtual

Compute the cross section for the input interaction.

Implements genie::XSecAlgorithmI.

Definition at line 53 of file KovalenkoQELCharmPXSec.cxx.

55 {
56  if(! this -> ValidProcess (interaction) ) return 0.;
57  if(! this -> ValidKinematics (interaction) ) return 0.;
58 
59  //----- get kinematics & init state - compute auxiliary vars
60  const Kinematics & kinematics = interaction->Kine();
61  const InitialState & init_state = interaction->InitState();
62  const Target & target = init_state.Tgt();
63 
64  //neutrino energy & momentum transfer
65  double E = init_state.ProbeE(kRfHitNucRest);
66  double E2 = E * E;
67  double Q2 = kinematics.Q2();
68 
69 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
70  LOG("QELCharmXSec", pDEBUG) << "E = " << E << ", Q2 = " << Q2;
71 #endif
72 
73  //resonance mass & nucleon mass
74  double MR = this->MRes (interaction);
75  double MR2 = TMath::Power(MR,2);
76  double Mnuc = target.HitNucMass();
77  double Mnuc2 = TMath::Power(Mnuc,2);
78 
79 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
80  LOG("QELCharmXSec", pDEBUG) << "M(RES) = " << MR;
81 #endif
82 
83  //----- Calculate the differential cross section dxsec/dQ^2
84  double Gf = kGF2 / (2*kPi);
85  double vR = (MR2 - Mnuc2 + Q2) / (2*Mnuc);
86  double xiR = this->xiBar(Q2, Mnuc, vR);
87  double vR2 = vR*vR;
88  double vR_E = vR/E;
89  double Q2_4E2 = Q2/(4*E2);
90  double Q2_2MExiR = Q2/(2*Mnuc*E*xiR);
91  double Z = this->ZR(interaction);
92  double D = this->DR(interaction);
93 
94 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
95  LOG("QELCharmXSec", pDEBUG)
96  << "Z = " << Z << ", D = " << D << ". xiR = " << xiR << ", vR = " << vR;
97 #endif
98 
99  double xsec = Gf*Z*D * (1 - vR_E + Q2_4E2 + Q2_2MExiR) *
100  TMath::Sqrt(vR2 + Q2) / (vR*xiR);
101 
102  //----- The algorithm computes dxsec/dQ2
103  // Check whether variable tranformation is needed
104  if(kps!=kPSQ2fE) {
106  xsec *= J;
107  }
108 
109  //----- If requested return the free nucleon xsec even for input nuclear tgt
110  if( interaction->TestBit(kIAssumeFreeNucleon) ) return xsec;
111 
112  //----- Nuclear cross section (simple scaling here)
113  int nuc = target.HitNucPdg();
114  int NNucl = (pdg::IsProton(nuc)) ? target.Z() : target.N();
115  xsec *= NNucl;
116 
117 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
118  LOG("QELCharmXSec", pINFO)
119  << "dsigma/dQ2(E=" << E << ", Q2=" << Q2 << ") = "
120  << xsec / (1E-40*units::cm2) << " x 1E-40 cm^2";
121 #endif
122 
123  return xsec;
124 }
double J(double q0, double q3, double Enu, double ml)
Definition: MECUtils.cxx:147
double Q2(const Interaction *const i)
Definition: KineUtils.cxx:1064
int HitNucPdg(void) const
Definition: Target.cxx:304
double HitNucMass(void) const
Definition: Target.cxx:233
double MRes(const Interaction *interaction) const
Generated/set kinematical variables for an event.
Definition: Kinematics.h:39
double ZR(const Interaction *interaction) const
bool ValidKinematics(const Interaction *i) const
Is the input kinematical point a physically allowed one?
double DR(const Interaction *interaction) const
bool IsProton(int pdgc)
Definition: PDGUtils.cxx:333
#define LOG(stream, priority)
A macro that returns the requested log4cpp::Category appending a string (using the FILE...
Definition: Messenger.h:96
static constexpr double cm2
Definition: Units.h:69
A Neutrino Interaction Target. Is a transparent encapsulation of quite different physical systems suc...
Definition: Target.h:40
int Z(void) const
Definition: Target.h:68
#define pINFO
Definition: Messenger.h:62
bool ValidProcess(const Interaction *i) const
Can this cross section algorithm handle the input process?
int N(void) const
Definition: Target.h:69
const UInt_t kIAssumeFreeNucleon
Definition: Interaction.h:49
E
Definition: 018_def.c:13
Definition: 018_def.c:13
double Jacobian(const Interaction *const i, KinePhaseSpace_t f, KinePhaseSpace_t t)
Definition: KineUtils.cxx:130
double xiBar(double Q2, double Mnuc, double v) const
double Q2(bool selected=false) const
Definition: Kinematics.cxx:125
const Target & Tgt(void) const
Definition: InitialState.h:66
static const double kGF2
Definition: Constants.h:59
double ProbeE(RefFrame_t rf) const
static const double kPi
Definition: Constants.h:37
Initial State information.
Definition: InitialState.h:48
#define pDEBUG
Definition: Messenger.h:63
double KovalenkoQELCharmPXSec::ZR ( const Interaction interaction) const
private

Definition at line 126 of file KovalenkoQELCharmPXSec.cxx.

127 {
128  const XclsTag & xcls = interaction->ExclTag();
129  const InitialState & init_state = interaction->InitState();
130 
131  int pdgc = xcls.CharmHadronPdg();
132  bool isP = pdg::IsProton ( init_state.Tgt().HitNucPdg() );
133  bool isN = pdg::IsNeutron( init_state.Tgt().HitNucPdg() );
134 
135  if ( pdgc == kPdgLambdaPc && isN ) return fScLambdaP;
136  else if ( pdgc == kPdgSigmaPc && isN ) return fScSigmaP;
137  else if ( pdgc == kPdgSigmaPPc && isP ) return fScSigmaPP;
138  else abort();
139 }
int HitNucPdg(void) const
Definition: Target.cxx:304
int CharmHadronPdg(void) const
Definition: XclsTag.h:52
Contains minimal information for tagging exclusive processes.
Definition: XclsTag.h:39
const int kPdgSigmaPPc
Definition: PDGCodes.h:102
bool IsNeutron(int pdgc)
Definition: PDGUtils.cxx:338
bool IsProton(int pdgc)
Definition: PDGUtils.cxx:333
const int kPdgLambdaPc
Definition: PDGCodes.h:99
const int kPdgSigmaPc
Definition: PDGCodes.h:101
const XclsTag & ExclTag(void) const
Definition: Interaction.h:72
const InitialState & InitState(void) const
Definition: Interaction.h:69
const Target & Tgt(void) const
Definition: InitialState.h:66
Initial State information.
Definition: InitialState.h:48

Member Data Documentation

double genie::KovalenkoQELCharmPXSec::fMo
private

Definition at line 79 of file KovalenkoQELCharmPXSec.h.

const PDFModelI* genie::KovalenkoQELCharmPXSec::fPDFModel
private

Definition at line 75 of file KovalenkoQELCharmPXSec.h.

double genie::KovalenkoQELCharmPXSec::fResDMLambda
private

Definition at line 83 of file KovalenkoQELCharmPXSec.h.

double genie::KovalenkoQELCharmPXSec::fResDMSigma
private

Definition at line 84 of file KovalenkoQELCharmPXSec.h.

double genie::KovalenkoQELCharmPXSec::fScLambdaP
private

Definition at line 80 of file KovalenkoQELCharmPXSec.h.

double genie::KovalenkoQELCharmPXSec::fScSigmaP
private

Definition at line 81 of file KovalenkoQELCharmPXSec.h.

double genie::KovalenkoQELCharmPXSec::fScSigmaPP
private

Definition at line 82 of file KovalenkoQELCharmPXSec.h.

const XSecIntegratorI* genie::KovalenkoQELCharmPXSec::fXSecIntegrator
private

const IntegratorI * fIntegrator;

Definition at line 77 of file KovalenkoQELCharmPXSec.h.


The documentation for this class was generated from the following files: