30 #include <TObjString.h> 37 bool using_new_version =
false;
41 TFile
file(filename,
"READ");
42 TTree *
tree = (TTree *) file.Get(
"gRooTracker");
46 TObjString* EvtCode = 0;
57 double StdHepX4 [
kNPmax][4];
58 double StdHepP4 [
kNPmax][4];
59 double StdHepPolz [
kNPmax][3];
67 double NuParentDecP4 [4];
68 double NuParentDecX4 [4];
69 double NuParentProP4 [4];
70 double NuParentProX4 [4];
74 TBranch * brEvtFlags = tree -> GetBranch (
"EvtFlags");
75 TBranch * brEvtCode = tree -> GetBranch (
"EvtCode");
76 TBranch * brEvtNum = tree -> GetBranch (
"EvtNum");
77 TBranch * brEvtXSec = tree -> GetBranch (
"EvtXSec");
78 TBranch * brEvtDXSec = tree -> GetBranch (
"EvtDXSec");
79 TBranch * brEvtWght = tree -> GetBranch (
"EvtWght");
80 TBranch * brEvtProb = tree -> GetBranch (
"EvtProb");
81 TBranch * brEvtVtx = tree -> GetBranch (
"EvtVtx");
82 TBranch * brStdHepN = tree -> GetBranch (
"StdHepN");
83 TBranch * brStdHepPdg = tree -> GetBranch (
"StdHepPdg");
84 TBranch * brStdHepStatus = tree -> GetBranch (
"StdHepStatus");
85 TBranch * brStdHepRescat = (using_new_version) ? tree -> GetBranch (
"StdHepRescat") : 0;
86 TBranch * brStdHepX4 = tree -> GetBranch (
"StdHepX4");
87 TBranch * brStdHepP4 = tree -> GetBranch (
"StdHepP4");
88 TBranch * brStdHepPolz = tree -> GetBranch (
"StdHepPolz");
89 TBranch * brStdHepFd = tree -> GetBranch (
"StdHepFd");
90 TBranch * brStdHepLd = tree -> GetBranch (
"StdHepLd");
91 TBranch * brStdHepFm = tree -> GetBranch (
"StdHepFm");
92 TBranch * brStdHepLm = tree -> GetBranch (
"StdHepLm");
93 TBranch * brG2NeutEvtCode = (using_new_version) ? tree -> GetBranch (
"G2NeutEvtCode") : 0;
94 TBranch * brNuParentPdg = tree -> GetBranch (
"NuParentPdg");
95 TBranch * brNuParentDecMode = tree -> GetBranch (
"NuParentDecMode");
96 TBranch * brNuParentDecP4 = tree -> GetBranch (
"NuParentDecP4");
97 TBranch * brNuParentDecX4 = tree -> GetBranch (
"NuParentDecX4");
98 TBranch * brNuParentProP4 = tree -> GetBranch (
"NuParentProP4");
99 TBranch * brNuParentProX4 = tree -> GetBranch (
"NuParentProX4");
100 TBranch * brNuParentProNVtx = tree -> GetBranch (
"NuParentProNVtx");
103 brEvtFlags -> SetAddress ( &EvtFlags );
104 brEvtCode -> SetAddress ( &EvtCode );
105 brEvtNum -> SetAddress ( &EvtNum );
106 brEvtXSec -> SetAddress ( &EvtXSec );
107 brEvtDXSec -> SetAddress ( &EvtDXSec );
108 brEvtWght -> SetAddress ( &EvtWght );
109 brEvtProb -> SetAddress ( &EvtProb );
110 brEvtVtx -> SetAddress ( EvtVtx );
111 brStdHepN -> SetAddress ( &StdHepN );
112 brStdHepPdg -> SetAddress ( StdHepPdg );
113 brStdHepStatus -> SetAddress ( StdHepStatus );
114 if(using_new_version) {
115 brStdHepRescat -> SetAddress ( StdHepRescat );
117 brStdHepX4 -> SetAddress ( StdHepX4 );
118 brStdHepP4 -> SetAddress ( StdHepP4 );
119 brStdHepPolz -> SetAddress ( StdHepPolz );
120 brStdHepFd -> SetAddress ( StdHepFd );
121 brStdHepLd -> SetAddress ( StdHepLd );
122 brStdHepFm -> SetAddress ( StdHepFm );
123 brStdHepLm -> SetAddress ( StdHepLm );
124 if(using_new_version) {
125 brG2NeutEvtCode -> SetAddress ( &G2NeutEvtCode );
127 brNuParentPdg -> SetAddress ( &NuParentPdg );
128 brNuParentDecMode -> SetAddress ( &NuParentDecMode );
129 brNuParentDecP4 -> SetAddress ( NuParentDecP4 );
130 brNuParentDecX4 -> SetAddress ( NuParentDecX4 );
131 brNuParentProP4 -> SetAddress ( NuParentProP4 );
132 brNuParentProX4 -> SetAddress ( NuParentProX4 );
133 brNuParentProNVtx -> SetAddress ( &NuParentProNVtx );
135 int n = tree->GetEntries();
136 printf(
"Number of entries: %d", n);
140 for(
int i=0;
i < tree->GetEntries();
i++) {
141 printf(
"\n\n ** Current entry: %d \n",
i);
144 printf(
"\n -----------------------------------------------------------------------------------------------------------------");
145 printf(
"\n Event code : %s", EvtCode->String().Data());
146 printf(
"\n Event x-section : %10.5f * 1E-38* cm^2", EvtXSec);
147 printf(
"\n Event kinematics x-section : %10.5f * 1E-38 * cm^2/{K^n}", EvtDXSec);
148 printf(
"\n Event weight : %10.8f", EvtWght);
149 printf(
"\n Event vertex : x = %8.2f mm, y = %8.2f mm, z = %8.2f mm", EvtVtx[0], EvtVtx[1], EvtVtx[2]);
150 printf(
"\n *Particle list:");
151 printf(
"\n --------------------------------------------------------------------------------------------------------------------------");
152 printf(
"\n | Idx | Ist | PDG | Rescat | Mother | Daughter | Px | Py | Pz | E | x | y | z |");
153 printf(
"\n | | | | | | |(GeV/c) |(GeV/c) |(GeV/c) | (GeV) | (fm) | (fm) | (fm) |");
154 printf(
"\n --------------------------------------------------------------------------------------------------------------------------");
156 for(
int ip=0;
ip<StdHepN;
ip++) {
157 printf(
"\n | %3d | %3d | %10d | %6d | %3d | %3d | %3d | %3d | %6.3f | %6.3f | %6.3f | %6.3f | %6.3f | %6.3f | %6.3f |",
158 ip, StdHepStatus[
ip], StdHepPdg[ip], StdHepRescat[ip],
159 StdHepFm[ip], StdHepLm[ip], StdHepFd[ip], StdHepLd[ip],
160 StdHepP4[ip][0], StdHepP4[ip][1], StdHepP4[ip][2], StdHepP4[ip][3],
161 StdHepX4[ip][0], StdHepX4[ip][1], StdHepX4[ip][2]);
163 printf(
"\n --------------------------------------------------------------------------------------------------------------------------");
164 printf(
"\n *Flux Info:");
165 printf(
"\n Parent hadron pdg code : %d", NuParentPdg);
166 printf(
"\n Parent hadron decay mode : %d", NuParentDecMode);
167 printf(
"\n Parent hadron 4p at decay : Px = %6.3f GeV/c, Py = %6.3f GeV/c, Pz = %6.3f GeV/c, E = %6.3f GeV",
168 NuParentDecP4[0], NuParentDecP4[1], NuParentDecP4[2], NuParentDecP4[3]);
169 printf(
"\n Parent hadron 4p at prod. : Px = %6.3f GeV/c, Py = %6.3f GeV/c, Pz = %6.3f GeV/c, E = %6.3f GeV",
170 NuParentProP4[0], NuParentProP4[1], NuParentProP4[2], NuParentProP4[3]);
171 printf(
"\n Parent hadron 4x at decay : x = %6.3f m, y = %6.3f m, z = %6.3f m, t = %6.3f s",
172 NuParentDecX4[0], NuParentDecX4[1], NuParentDecX4[2], NuParentDecX4[3]);
173 printf(
"\n Parent hadron 4x at prod. : x = %6.3f m, y = %6.3f m, z = %6.3f m, t = %6.3f s",
174 NuParentProX4[0], NuParentProX4[1], NuParentProX4[2], NuParentProX4[3]);
175 printf(
"\n -------------------------------------------------------------------------------------------------------------------------- \n");
the ParameterSet object passed in for the configuration of a destination should be the only source that can affect the behavior of that destination This is to eliminate the dependencies of configuring a destination from multiple mostly from the defaults It suppresses possible glitches about changing the configuration file somewhere outside of a destination segament might still affect the behavior of that destination In the previous configuration for a specific the value of a certain e may come from following and have been suppressed It the configuring ParameterSet object for each destination will be required to carry a parameter list as complete as possible If a parameter still cannot be found in the ParameterSet the configuration code will go look for a hardwired default directly The model is a great simplicity comparing with the previous especially when looking for default values Another great advantage is most of the parameters now have very limited places that allows to appear Usually they can only appear at one certain level in a configuration file For in the old configuring model or in a default ParameterSet object inside of a or in a category or in a severity object This layout of multiple sources for a single parameter brings great confusion in both writing a configuration and in processing the configuration file Under the new the only allowed place for the parameter limit to appear is inside of a category which is inside of a destination object Other improvements simplify the meaning of a destination name In the old a destination name has multiple folds of meanings the e cout and cerr have the special meaning of logging messages to standard output or standard error the name also serves as the output filename if the destination is a file these names are also references to look up for detailed configurations in configuring the MessageFacility The multi purpose of the destination name might cause some unwanted behavior in either writing or parsing the configuration file To amend in the new model the destination name is now merely a name for a which might represent the literal purpose of this or just an id All other meanings of the destinations names now go into the destination ParameterSet as individual such as the type parameter and filename parameter Following is the deatiled rule for the new configuring Everything that is related with MessageFacility configuration must be wrapped in a single ParameterSet object with the name MessageFacility The MessageFacility ParameterSet object contains a series of top level parameters These parameters can be chosen a vector of string listing the name of debug enabled models Or use *to enable debug messages in all modules a vector of string a vector of string a vector of string a ParameterSet object containing the list of all destinations The destinations ParameterSet object is a combination of ParameterSet objects for individual destinations There are two types of destinations that you can insert in the destinations ParameterSet ordinary including cout
*file AnalysisTree_module cc *brief Module to create a TTree for analysis *authors tjyang fnal sowjanyag phys ksu edu **Taken from uboone code Imported by Karl k warburton sheffield ac uk *with the help of Tingjun Yang **Current implementation with one set of branches for each tracking algorithm *The data structure which hosts the addresses of the tree branches is *dynamically allocated on and it can be optionally destroyed at the *end of each event *The data and it is contained in a C vector of *one per algorithm These structures can also be allocated on demand *Each of these structures is connected to a set of one branch per *data member Data members are vectors of numbers or vectors of fixed size *C arrays The vector index represents the tracks reconstructed by the and each has a fixed size pool for connect to a *ROOT tree(creating the branches they need) and resize.*The AnalysisTreeDataStruct is const ructed with as many tracking algorithms as *there are named in the module configuration(even if they are not backed by *any available tracking data).*By default const ruction
< separator(=)> module_type Type Source location< separator(-)> DummyAnalyzer analyzer< path > DummyAnalyzer_module cc DummyFilter filter< path > DummyFilter_module cc *DummyProducer producer< path > DummyProducer_module cc *DummyProducer producer< path > DummyProducer_module cc< separator(=)> The modules marked *above are degenerate i e specifying the short module_type value leads to an ambiguity In order to use a degenerate in your configuration file
void read_t2k_rootracker(const char *filename)