Public Member Functions | Private Member Functions | Private Attributes | List of all members
genie::NievesSimoVacasMECPXSec2016 Class Reference

Computes the Valencia MEC model differential cross section. Uses precomputed hadon tensor tables. Is a concrete implementation of the XSecAlgorithmI interface. More...

#include <NievesSimoVacasMECPXSec2016.h>

Inheritance diagram for genie::NievesSimoVacasMECPXSec2016:
genie::XSecAlgorithmI genie::Algorithm

Public Member Functions

 NievesSimoVacasMECPXSec2016 ()
 
 NievesSimoVacasMECPXSec2016 (string config)
 
virtual ~NievesSimoVacasMECPXSec2016 ()
 
double XSec (const Interaction *i, KinePhaseSpace_t k) const
 Compute the cross section for the input interaction. More...
 
double Integral (const Interaction *i) const
 
bool ValidProcess (const Interaction *i) const
 Can this cross section algorithm handle the input process? More...
 
void Configure (const Registry &config)
 
void Configure (string config)
 
- Public Member Functions inherited from genie::XSecAlgorithmI
virtual ~XSecAlgorithmI ()
 
virtual bool ValidKinematics (const Interaction *i) const
 Is the input kinematical point a physically allowed one? More...
 
- Public Member Functions inherited from genie::Algorithm
virtual ~Algorithm ()
 
virtual void FindConfig (void)
 
virtual const RegistryGetConfig (void) const
 
RegistryGetOwnedConfig (void)
 
virtual const AlgIdId (void) const
 Get algorithm ID. More...
 
virtual AlgStatus_t GetStatus (void) const
 Get algorithm status. More...
 
virtual bool AllowReconfig (void) const
 
virtual AlgCmp_t Compare (const Algorithm *alg) const
 Compare with input algorithm. More...
 
virtual void SetId (const AlgId &id)
 Set algorithm ID. More...
 
virtual void SetId (string name, string config)
 
const AlgorithmSubAlg (const RgKey &registry_key) const
 
void AdoptConfig (void)
 
void AdoptSubstructure (void)
 
virtual void Print (ostream &stream) const
 Print algorithm info. More...
 

Private Member Functions

void LoadConfig (void)
 

Private Attributes

double fXSecScale
 external xsec scaling factor More...
 
const HadronTensorModelIfHadronTensorModel
 
const XSecIntegratorIfXSecIntegrator
 
const XSecScaleIfMECScaleAlg
 
const QvalueShifterfQvalueShifter
 

Additional Inherited Members

- Static Public Member Functions inherited from genie::Algorithm
static string BuildParamVectKey (const std::string &comm_name, unsigned int i)
 
static string BuildParamVectSizeKey (const std::string &comm_name)
 
- Protected Member Functions inherited from genie::XSecAlgorithmI
 XSecAlgorithmI ()
 
 XSecAlgorithmI (string name)
 
 XSecAlgorithmI (string name, string config)
 
- Protected Member Functions inherited from genie::Algorithm
 Algorithm ()
 
 Algorithm (string name)
 
 Algorithm (string name, string config)
 
void Initialize (void)
 
void DeleteConfig (void)
 
void DeleteSubstructure (void)
 
RegistryExtractLocalConfig (const Registry &in) const
 
RegistryExtractLowerConfig (const Registry &in, const string &alg_key) const
 Split an incoming configuration Registry into a block valid for the sub-algo identified by alg_key. More...
 
template<class T >
bool GetParam (const RgKey &name, T &p, bool is_top_call=true) const
 
template<class T >
bool GetParamDef (const RgKey &name, T &p, const T &def) const
 
template<class T >
int GetParamVect (const std::string &comm_name, std::vector< T > &v, bool is_top_call=true) const
 Handle to load vectors of parameters. More...
 
int GetParamVectKeys (const std::string &comm_name, std::vector< RgKey > &k, bool is_top_call=true) const
 
int AddTopRegistry (Registry *rp, bool owns=true)
 add registry with top priority, also update ownership More...
 
int AddLowRegistry (Registry *rp, bool owns=true)
 add registry with lowest priority, also update ownership More...
 
int MergeTopRegistry (const Registry &r)
 
int AddTopRegisties (const vector< Registry * > &rs, bool owns=false)
 Add registries with top priority, also udated Ownerships. More...
 
- Protected Attributes inherited from genie::Algorithm
bool fAllowReconfig
 
bool fOwnsSubstruc
 true if it owns its substructure (sub-algs,...) More...
 
AlgId fID
 algorithm name and configuration set More...
 
vector< Registry * > fConfVect
 
vector< boolfOwnerships
 ownership for every registry in fConfVect More...
 
AlgStatus_t fStatus
 algorithm execution status More...
 
AlgMapfOwnedSubAlgMp
 local pool for owned sub-algs (taken out of the factory pool) More...
 

Detailed Description

Computes the Valencia MEC model differential cross section. Uses precomputed hadon tensor tables. Is a concrete implementation of the XSecAlgorithmI interface.

Author
Code contributed by J. Schwehr, D. Cherdack, R. Gran and described in arXiv:1601.02038 and some of the refereces there-in, in particular PRD 88 (2013) 113007

Substantial code refactorizations by the core GENIE group.

Refactored in 2018 by S. Gardiner to use the new hadron tensor framework

J. Nieves, I. Ruiz Simo, M.J. Vicente Vacas, Inclusive quasi-elastic neutrino reactions, PRC 83 (2011) 045501

Mar 22, 2016

Copyright (c) 2003-2020, The GENIE Collaboration For the full text of the license visit http://copyright.genie-mc.org

Definition at line 41 of file NievesSimoVacasMECPXSec2016.h.

Constructor & Destructor Documentation

NievesSimoVacasMECPXSec2016::NievesSimoVacasMECPXSec2016 ( )

Definition at line 29 of file NievesSimoVacasMECPXSec2016.cxx.

29  :
30 XSecAlgorithmI("genie::NievesSimoVacasMECPXSec2016")
31 {
32 
33 }
NievesSimoVacasMECPXSec2016::NievesSimoVacasMECPXSec2016 ( string  config)

Definition at line 35 of file NievesSimoVacasMECPXSec2016.cxx.

35  :
36 XSecAlgorithmI("genie::NievesSimoVacasMECPXSec2016", config)
37 {
38 
39 }
static Config * config
Definition: config.cpp:1054
NievesSimoVacasMECPXSec2016::~NievesSimoVacasMECPXSec2016 ( )
virtual

Definition at line 41 of file NievesSimoVacasMECPXSec2016.cxx.

42 {
43 
44 }

Member Function Documentation

void NievesSimoVacasMECPXSec2016::Configure ( const Registry config)
virtual

Configure the algorithm with an external registry The registry is merged with the top level registry if it is owned, Otherwise a copy of it is added with the highest priority

Reimplemented from genie::Algorithm.

Definition at line 358 of file NievesSimoVacasMECPXSec2016.cxx.

359 {
360  Algorithm::Configure(config);
361  this->LoadConfig();
362 }
virtual void Configure(const Registry &config)
Definition: Algorithm.cxx:62
void NievesSimoVacasMECPXSec2016::Configure ( string  config)
virtual

Configure the algorithm from the AlgoConfigPool based on param_set string given in input An algorithm contains a vector of registries coming from different xml configuration files, which are loaded according a very precise prioriy This methods will load a number registries in order of priority: 1) "Tunable" parameter set from CommonParametes. This is loaded with the highest prioriry and it is designed to be used for tuning procedure Usage not expected from the user. 2) For every string defined in "CommonParame" the corresponding parameter set will be loaded from CommonParameter.xml 3) parameter set specified by the config string and defined in the xml file of the algorithm 4) if config is not "Default" also the Default parameter set from the same xml file will be loaded Effectively this avoids the repetion of a parameter when it is not changed in the requested configuration

Reimplemented from genie::Algorithm.

Definition at line 364 of file NievesSimoVacasMECPXSec2016.cxx.

365 {
367  this->LoadConfig();
368 }
static Config * config
Definition: config.cpp:1054
virtual void Configure(const Registry &config)
Definition: Algorithm.cxx:62
double NievesSimoVacasMECPXSec2016::Integral ( const Interaction i) const
virtual

Integrate the model over the kinematic phase space available to the input interaction (kinematical cuts can be included)

Implements genie::XSecAlgorithmI.

Definition at line 339 of file NievesSimoVacasMECPXSec2016.cxx.

341 {
342  double xsec = fXSecIntegrator->Integrate(this,interaction);
343  return xsec;
344 }
virtual double Integrate(const XSecAlgorithmI *model, const Interaction *interaction) const =0
void NievesSimoVacasMECPXSec2016::LoadConfig ( void  )
private

Definition at line 370 of file NievesSimoVacasMECPXSec2016.cxx.

371 {
372  bool good_config = true;
373 
374  // Cross section scaling factor
375  GetParam( "MEC-CC-XSecScale", fXSecScale ) ;
376 
377  fHadronTensorModel = dynamic_cast<const HadronTensorModelI *> ( this->SubAlg("HadronTensorAlg") );
378  if( !fHadronTensorModel ) {
379  good_config = false ;
380  LOG("NievesSimoVacasMECPXSec2016", pERROR) << "The required HadronTensorAlg does not exist. AlgID is : " << SubAlg("HadronTensorAlg")->Id() ;
381  }
382 
383  fXSecIntegrator = dynamic_cast<const XSecIntegratorI *> (this->SubAlg("NumericalIntegrationAlg"));
384  if( !fXSecIntegrator ) {
385  good_config = false ;
386  LOG("NievesSimoVacasMECPXSec2016", pERROR) << "The required NumericalIntegrationAlg does not exist. AlgID is : " << SubAlg("NumericalIntegrationAlg")->Id();
387  }
388 
389  // Read optional QvalueShifter:
390  fQvalueShifter = nullptr;
391  if( GetConfig().Exists("QvalueShifterAlg") ) {
392  fQvalueShifter = dynamic_cast<const QvalueShifter *> ( this->SubAlg("QvalueShifterAlg") );
393  if( !fQvalueShifter ) {
394  good_config = false ;
395  LOG("NievesSimoVacasMECPXSec2016", pERROR) << "The required QvalueShifterAlg does not exist. AlgID is : " << SubAlg("QvalueShifterAlg")->Id() ;
396  }
397  }
398 
399  // Read optional MECScaleVsW:
400  fMECScaleAlg = nullptr;
401  if( GetConfig().Exists("MECScaleAlg") ) {
402  fMECScaleAlg = dynamic_cast<const XSecScaleI *> ( this->SubAlg("MECScaleAlg") );
403  if( !fMECScaleAlg ) {
404  good_config = false ;
405  LOG("NievesSimoVacasMECPXSec2016", pERROR) << "The required MECScaleAlg cannot be casted. AlgID is : " << SubAlg("MECScaleAlg")->Id() ;
406  }
407  }
408 
409  if( ! good_config ) {
410  LOG("NievesSimoVacasMECPXSec2016", pERROR) << "Configuration has failed.";
411  exit(78) ;
412  }
413 
414 }
#define pERROR
Definition: Messenger.h:59
Cross Section Integrator Interface.
This class is responsible to compute a scaling factor for the XSec.
Definition: XSecScaleI.h:25
virtual const Registry & GetConfig(void) const
Definition: Algorithm.cxx:246
double fXSecScale
external xsec scaling factor
#define LOG(stream, priority)
A macro that returns the requested log4cpp::Category appending a string (using the FILE...
Definition: Messenger.h:96
virtual const AlgId & Id(void) const
Get algorithm ID.
Definition: Algorithm.h:97
Creates hadron tensor objects for use in cross section calculations.
bool GetParam(const RgKey &name, T &p, bool is_top_call=true) const
const Algorithm * SubAlg(const RgKey &registry_key) const
Definition: Algorithm.cxx:345
bool NievesSimoVacasMECPXSec2016::ValidProcess ( const Interaction i) const
virtual

Can this cross section algorithm handle the input process?

Implements genie::XSecAlgorithmI.

Definition at line 346 of file NievesSimoVacasMECPXSec2016.cxx.

348 {
349  if (interaction->TestBit(kISkipProcessChk)) return true;
350 
351  const ProcessInfo & proc_info = interaction->ProcInfo();
352  if (!proc_info.IsMEC()) {
353  return false;
354  }
355  return true;
356 }
A class encapsulating an enumeration of interaction types (EM, Weak-CC, Weak-NC) and scattering types...
Definition: ProcessInfo.h:46
bool IsMEC(void) const
const UInt_t kISkipProcessChk
if set, skip process validity checks
Definition: Interaction.h:47
double NievesSimoVacasMECPXSec2016::XSec ( const Interaction i,
KinePhaseSpace_t  k 
) const
virtual

Compute the cross section for the input interaction.

Todo:
Replace these hard-coded replacements with an equivalent XML configuration
Todo:
Revisit this assumption, and perhaps implement something more robust
Todo:
Shouldn't we get this from the nuclear model?

Implements genie::XSecAlgorithmI.

Definition at line 46 of file NievesSimoVacasMECPXSec2016.cxx.

48 {
49  // If {W,Q2} have been supplied instead, compute {Tl, ctl}
50  // NOTE: The expressions used here neglect Fermi motion and
51  // should eventually be revisited. See the "important note"
52  // in src/Framework/Utils/KineUtils.cxx about the
53  // Jacobian for transforming {W,Q2} --> {Tl, ctl}.
54  // - S. Gardiner, 29 July 2020
55  if ( kps == kPSWQ2fE ) {
56 
57  double Q2 = interaction->Kine().GetKV( kKVQ2 );
58  double W = interaction->Kine().GetKV( kKVW );
59 
60  // Probe properties (mass, energy, momentum)
61  const InitialState& init_state = interaction->InitState();
62  double mv = init_state.Probe()->Mass();
63  double Ev = init_state.ProbeE( kRfLab );
64  double pv = std::sqrt( std::max(0., Ev*Ev - mv*mv) );
65 
66  // Invariant mass of the initial hit nucleon
67  const TLorentzVector& hit_nuc_P4 = init_state.Tgt().HitNucP4();
68  double M = hit_nuc_P4.M();
69 
70  // Get the outgoing lepton kinetic energy
71  double ml = interaction->FSPrimLepton()->Mass();
72  double Tl = Ev - ml - ( (W*W + Q2 - M*M) / (2.*M) );
73 
74  // Get the outgoing lepton scattering cosine
75  double El = Tl + ml;
76  double pl = std::sqrt( std::max(0., El*El - ml*ml) );
77  double ctl = ( 2.*Ev*El - Q2 - mv*mv - ml*ml ) / ( 2. * pv * pl );
78 
79  // Set Tl, ctl in the interaction
80  interaction->KinePtr()->SetKV( kKVTl, Tl );
81  interaction->KinePtr()->SetKV( kKVctl, ctl );
82  }
83 
84  // This function returns d2sigma/(dTmu dcos_mu) in GeV^(-3)
85  int target_pdg = interaction->InitState().Tgt().Pdg();
86 
87  int A_request = pdg::IonPdgCodeToA(target_pdg);
88  int Z_request = pdg::IonPdgCodeToZ(target_pdg);
89 
90  // To generate cross-sections for nuclei other than those with hadron
91  // tensors we need to pull both the full cross-section and
92  // the pn initial state fraction.
93  // Non-isoscalar nuclei are beyond the original published Valencia model
94  // and scale with A according to the number of pp, pn, or nn pairs
95  // the probe is expected to find.
96  // There is some by-hand optimization here, skipping the delta part when
97  // only the total cross-section is requested.
98  // Possible future models without a Delta had tensor would also use that
99  // flag to call this without computing the Delta part.
100 
101  // Try to look up a hadron tensor in the pool that is an exact match for
102  // the target nucleus. If an exact match cannot be found, decide upon a
103  // suitable substitute based on the mass number A and proton number Z.
104 
105  int tensor_pdg = target_pdg;
106 
107  /// \todo Replace these hard-coded replacements with an equivalent XML
108  /// configuration
110  {
111 
112  if ( A_request == 4 && Z_request == 2 ) {
113  tensor_pdg = kPdgTgtC12;
114  // This is for helium 4, but use carbon tensor
115  // the use of nuclear density parameterization is suspicious
116  // but some users (MINERvA) need something not nothing.
117  // The pn will be exactly 1/3, but pp and nn will be ~1/4
118  // Because the combinatorics are different.
119  // Could do lithium beryllium boron which you don't need
120  }
121  else if (A_request < 9) {
122  // refuse to do D, T, He3, Li, and some Be, B
123  // actually it would work technically, maybe except D, T
124  MAXLOG("NievesSimoVacasMEC", pWARN, 10)
125  << "Asked to scale to deuterium through boron "
126  << target_pdg << " nope, lets not do that.";
127  return 0;
128  }
129  else if (A_request >= 9 && A_request < 15) {
130  tensor_pdg = kPdgTgtC12;
131  //}
132  // could explicitly put in nitrogen for air
133  //else if ( A_request >= 14 && A < 15) { // AND CHANGE <=14 to <14.
134  // tensor_pdg = kPdgTgtN14;
135  }
136  else if (A_request >= 15 && A_request < 22) {
137  tensor_pdg = kPdgTgtO16;
138  }
139  else if (A_request >= 22 && A_request < 33) {
140  // of special interest, this gets Al27 and Si28
141  tensor_pdg = 1000140280;
142  }
143  else if (A_request >= 33 && A_request < 50) {
144  // of special interest, this gets Ar40 and Ti48
145  tensor_pdg = kPdgTgtCa40;
146  }
147  else if (A_request >= 50 && A_request < 90) {
148  // pseudoFe56, also covers many other ferrometals and Ge
149  tensor_pdg = 1000280560;
150  }
151  else if (A_request >= 90 && A_request < 160) {
152  // use Ba112 = PseudoCd. Row5 of Periodic table useless. Ag, Xe?
153  tensor_pdg = 1000561120;
154  }
155  else if (A_request >= 160) {
156  // use Rf208 = pseudoPb
157  tensor_pdg = 1001042080;
158  }
159  else {
160  MAXLOG("NievesSimoVacasMEC", pWARN, 10)
161  << "Asked to scale to a nucleus "
162  << target_pdg << " which we don't know yet.";
163  return 0;
164  }
165  }
166 
167  // Check that the input kinematical point is within the range
168  // in which hadron tensors are known (for chosen target)
169  double Ev = interaction->InitState().ProbeE(kRfLab);
170  double Tl = interaction->Kine().GetKV(kKVTl);
171  double costl = interaction->Kine().GetKV(kKVctl);
172  double ml = interaction->FSPrimLepton()->Mass();
173  double Q0 = interaction->Kine().GetKV(kKVQ0);
174  double Q3 = interaction->Kine().GetKV(kKVQ3);
175 
176  const LabFrameHadronTensorI* tensor
177  = dynamic_cast<const LabFrameHadronTensorI*>(
179 
180  // If retrieving the tensor failed, complain and return zero
181  if ( !tensor ) {
182  LOG("NievesSimoVacasMEC", pWARN) << "Failed to load a"
183  " hadronic tensor for the nuclide " << tensor_pdg;
184  return 0.;
185  }
186 
187  // Assume for now that the range of validity for the "FullAll" hadron
188  // tensor is the same as for the partial hadron tensors
189  /// \todo Revisit this assumption, and perhaps implement something
190  /// more robust
191  double Q0min = tensor->q0Min();
192  double Q0max = tensor->q0Max();
193  double Q3min = tensor->qMagMin();
194  double Q3max = tensor->qMagMax();
195  if (Q0 < Q0min || Q0 > Q0max || Q3 < Q3min || Q3 > Q3max) {
196  return 0.0;
197  }
198 
199  // Get the Q-value needed to calculate the cross sections using the
200  // hadron tensor.
201  /// \todo Shouldn't we get this from the nuclear model?
202  int nu_pdg = interaction->InitState().ProbePdg();
203  double Q_value = genie::utils::mec::Qvalue(target_pdg, nu_pdg);
204 
205  // Apply Qvalue relative shift if needed:
206  if( fQvalueShifter ) Q_value += Q_value * fQvalueShifter -> Shift( interaction->InitState().Tgt() ) ;
207 
208  // By default, we will compute the full cross-section. If a resonance is
209  // set, we will calculate the part of the cross-section with an internal
210  // Delta line without a final state pion (usually called PPD for pioness
211  // Delta decay). If a {p,n} hit dinucleon was set we will calculate the
212  // cross-section for that component only (either full or PDD cross-section)
213  bool delta = interaction->ExclTag().KnownResonance();
214  bool pn = (interaction->InitState().Tgt().HitNucPdg() == kPdgClusterNP);
215 
216  double xsec_all = 0.;
217  double xsec_pn = 0.;
218  if ( delta ) {
219 
220  const LabFrameHadronTensorI* tensor_delta_all
221  = dynamic_cast<const LabFrameHadronTensorI*>(
223 
224  if ( !tensor_delta_all ) {
225  LOG("NievesSimoVacasMEC", pWARN) << "Failed to load a \"DeltaAll\""
226  << " hadronic tensor for nuclide " << tensor_pdg;
227  return 0.;
228  }
229 
230  const LabFrameHadronTensorI* tensor_delta_pn
231  = dynamic_cast<const LabFrameHadronTensorI*>(
233 
234  if ( !tensor_delta_pn ) {
235  LOG("NievesSimoVacasMEC", pWARN) << "Failed to load a \"Deltapn\""
236  << " hadronic tensor for nuclide " << tensor_pdg;
237  return 0.;
238  }
239 
240  xsec_all = tensor_delta_all->dSigma_dT_dCosTheta(interaction, Q_value);
241  xsec_pn = tensor_delta_pn->dSigma_dT_dCosTheta(interaction, Q_value);
242 
243  }
244  else {
245 
246  const LabFrameHadronTensorI* tensor_full_all
247  = dynamic_cast<const LabFrameHadronTensorI*>(
249 
250  if ( !tensor_full_all ) {
251  LOG("NievesSimoVacasMEC", pWARN) << "Failed to load a \"FullAll\""
252  << " hadronic tensor for nuclide " << tensor_pdg;
253  return 0.;
254  }
255 
256  const LabFrameHadronTensorI* tensor_full_pn
257  = dynamic_cast<const LabFrameHadronTensorI*>(
259 
260  if ( !tensor_full_pn ) {
261  LOG("NievesSimoVacasMEC", pWARN) << "Failed to load a \"Fullpn\""
262  << " hadronic tensor for nuclide " << tensor_pdg;
263  return 0.;
264  }
265 
266  xsec_all = tensor_full_all->dSigma_dT_dCosTheta(interaction, Q_value);
267  xsec_pn = tensor_full_pn->dSigma_dT_dCosTheta(interaction, Q_value);
268  }
269 
270  // We need to scale the cross section appropriately if
271  // we are using a hadronic tensor for a nuclide that is different
272  // from the actual target
273  bool need_to_scale = (target_pdg != tensor_pdg);
274 
275  // would need to trap and treat He3, T, D special here.
276  if ( need_to_scale ) {
277 
278  double PP = Z_request;
279  double NN = A_request - PP;
280  double P = pdg::IonPdgCodeToZ(tensor_pdg);
281  double N = pdg::IonPdgCodeToA(tensor_pdg) - P;
282 
283  double scale_pn = TMath::Sqrt( (PP*NN)/(P*N) );
284  double scale_pp = TMath::Sqrt( (PP * (PP - 1.)) / (P * (P - 1.)) );
285  double scale_nn = TMath::Sqrt( (NN * (NN - 1.)) / (N * (N - 1.)) );
286 
287  LOG("NievesSimoVacasMEC", pDEBUG)
288  << "Scale pn pp nn for (" << target_pdg << ", " << tensor_pdg << ")"
289  << " : " << scale_pn << " " << scale_pp << " " << scale_nn;
290 
291  // This is an approximation in at least three senses:
292  // 1. We are scaling from an isoscalar nucleus using p and n counting
293  // 2. We are not using the right qvalue in the had tensor
294  // 3. We are not scaling the Delta faster than the non-Delta.
295  // The guess is that these are good approximations.
296  // A test we could document is to scale from O16 to N14 or C12 using this
297  // algorithm and see how many percent deviation we see from the full
298  // calculation.
299  double temp_all = xsec_all;
300  double temp_pn = xsec_pn * scale_pn;
301  if (nu_pdg > 0) {
302  // matter neutrinos
303  temp_all = xsec_pn * scale_pn + (xsec_all - xsec_pn) * scale_nn;
304  }
305  else {
306  // antineutrinos
307  temp_all = xsec_pn * scale_pn + (xsec_all - xsec_pn) * scale_pp;
308  }
309 
310  xsec_all = temp_all;
311  xsec_pn = temp_pn;
312 
313  }
314 
315  // Choose the right kind of cross section ("all" or "pn") to return
316  // based on whether a {p, n} dinucleon was hit
317  double xsec = (pn) ? xsec_pn : xsec_all;
318 
319  // Apply given scaling factor
320  xsec *= fXSecScale;
321 
322  if( fMECScaleAlg ) xsec *= fMECScaleAlg->GetScaling( * interaction ) ;
323 
324  if ( kps != kPSTlctl && kps != kPSWQ2fE ) {
325  LOG("NievesSimoVacasMEC", pWARN)
326  << "Doesn't support transformation from "
327  << KinePhaseSpace::AsString(kPSTlctl) << " to "
328  << KinePhaseSpace::AsString(kps);
329  xsec = 0;
330  }
331  else if ( kps == kPSWQ2fE && xsec != 0. ) {
333  xsec *= J;
334  }
335 
336  return xsec;
337 }
double J(double q0, double q3, double Enu, double ml)
Definition: MECUtils.cxx:147
double Q2(const Interaction *const i)
Definition: KineUtils.cxx:1064
const int kPdgClusterNP
Definition: PDGCodes.h:215
int IonPdgCodeToA(int pdgc)
Definition: PDGUtils.cxx:60
virtual double dSigma_dT_dCosTheta(const Interaction *interaction, double Q_value) const =0
TParticlePDG * Probe(void) const
Abstract interface for an object that computes the elements ( , , etc.) and structure functions ( ...
std::pair< float, std::string > P
virtual double qMagMin() const =0
#define MAXLOG(s, l, c)
Similar to LOG(stream,priority) but quits after "maxcount" messages.
Definition: Messenger.h:241
virtual const HadronTensorI * GetTensor(int tensor_pdg, HadronTensorType_t type) const =0
double fXSecScale
external xsec scaling factor
const int kPdgTgtCa40
Definition: PDGCodes.h:204
const int kPdgTgtO16
Definition: PDGCodes.h:203
double Qvalue(int targetpdg, int nupdg)
Definition: MECUtils.cxx:164
const TLorentzVector & HitNucP4(void) const
Definition: Target.h:91
#define LOG(stream, priority)
A macro that returns the requested log4cpp::Category appending a string (using the FILE...
Definition: Messenger.h:96
virtual double q0Min() const =0
virtual double GetScaling(const Interaction &) const =0
static string AsString(KinePhaseSpace_t kps)
static int max(int a, int b)
#define pWARN
Definition: Messenger.h:60
const int kPdgTgtC12
Definition: PDGCodes.h:202
double Jacobian(const Interaction *const i, KinePhaseSpace_t f, KinePhaseSpace_t t)
Definition: KineUtils.cxx:130
virtual double qMagMax() const =0
int IonPdgCodeToZ(int pdgc)
Definition: PDGUtils.cxx:52
const Target & Tgt(void) const
Definition: InitialState.h:66
double ProbeE(RefFrame_t rf) const
virtual double q0Max() const =0
Initial State information.
Definition: InitialState.h:48
#define pDEBUG
Definition: Messenger.h:63

Member Data Documentation

const HadronTensorModelI* genie::NievesSimoVacasMECPXSec2016::fHadronTensorModel
private

Definition at line 65 of file NievesSimoVacasMECPXSec2016.h.

const XSecScaleI* genie::NievesSimoVacasMECPXSec2016::fMECScaleAlg
private

Definition at line 69 of file NievesSimoVacasMECPXSec2016.h.

const QvalueShifter* genie::NievesSimoVacasMECPXSec2016::fQvalueShifter
private

Definition at line 70 of file NievesSimoVacasMECPXSec2016.h.

const XSecIntegratorI* genie::NievesSimoVacasMECPXSec2016::fXSecIntegrator
private

Definition at line 67 of file NievesSimoVacasMECPXSec2016.h.

double genie::NievesSimoVacasMECPXSec2016::fXSecScale
private

external xsec scaling factor

Definition at line 63 of file NievesSimoVacasMECPXSec2016.h.


The documentation for this class was generated from the following files: